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Abstract

Many empirical applications estimate causal effects of a continuous
endogenous variable (treatment) using a binary instrument. Estima-
tion is typically done through linear 2SLS. This approach requires a
mean treatment change and causal interpretation requires the LATE-
type monotonicity in the first stage. An alternative approach is to
explore distributional changes in the treatment, where the first-stage
restriction is treatment rank similarity. We propose causal estimands
that are doubly robust in that they are valid under either of these two
restrictions. We apply the doubly robust estimation to estimate the im-
pacts of sleep on well-being. Our new estimates corroborate the usual
2SLS estimates.
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1 Introduction

Many empirical applications estimate causal effects of a continuously dis-

tributed endogenous variable (treatment), such as air pollution concentration,
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poverty rate, income, price, birth weight, and time use, etc. A common ap-

proach is to apply two-stage least squares (2SLS) estimation, using a binary

or discrete instrumental variable (IV). See, for recent examples, Chay and

Greenstone (2005), Kling et al. (2007), Goda et al. (2011), Angrist et al.

(2000), Maruyama and Heinesen (2020), Giaccherini et al. (2021), Aggeborn

and Ohman (2021), and Bessone et al. (2021). In the case of a binary instru-

ment, the 2SLS estimator essentially estiamtes the Wald ratio. In its basic

form without considering covariates, the Wald ratio estimand is given by

τWald:=
E [Y |Z = 1]− E [Y |Z = 0]

E [T |Z = 1]− E [T |Z = 0]
, (1)

where Y is the outcome of interest, Z is the binary instrument and T is the

treatment. The above estimand τWald requires a mean change in the treat-

ment variable, as the denominator cannot be zero. In addition, when treat-

ment effect is heterogenous and individuals select treatment intensity based on

idiosyncratic gains, causal interpretation of the Wald ratio relies on a mono-

tonicity assumption, which restricts treatment to change in one direction when

the IV changes. This monotonicity assumption is originally proposed in Im-

bens and Angrist (1994) to show that in the case of a binary treatment and a

binary IV, τWald identifies a local average treatment effect (LATE).

One drawback of the above approach is that causal identification may be

weak or may even fail. Frequently, policy instruments aim to shift one or

two tails of the treatment distribution or change other features, such as the

variance, of the treatment. As a result, treatment changes may concentrate

at some selected quantiles, say lower or upper quantiles. By solely focusing

on the mean treatment change, one may miss where the true changes are in

the treatment distribution. Examples of such policies include minimum wage,

minimum capital requirements, and the pollution ceiling set by Environmental

Protection Agency (EPA). In this paper, we consider an alternative approach,

which explores the distributional change in the first stage for causal identi-

fication. This idea has been proposed and explored in the non-separable IV

model literature. The commonly employed restriction in the first stage is
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treatment rank invariance or more generally treatment rank similarity. Rank

invariance in the first stage is typically stated as the condition that the treat-

ment function is monotonic in a scalar disturbance. See, e.g., Imbens and

Newey (2002), and Chesher (2001, 2002) for early papers exploring this con-

dition in non-separable models. Note that both the LATE-type monotonicity

and treatment rank similarity are restrictions on the first-stage instrument

effect heterogeneity. In general neither assumption implies the other. Also,

these assumptions are not verifiable, in the sense that one may at best test

their testable implications, which are necessary but not sufficient conditions

of these assumptions.1

This paper takes a novel nonparametric doubly robust (DR) identification

approach to identify causal effects of a continuous treatment using a binary

or discrete instrument. We consider the two alternative restrictions on the

first-stage instrument effect heterogeneity: the LATE-type monotonicity or

treatment rank similarity. Either of these assumptions can be consistent with

certain treatment choice behaviors and has been used extensively to identify

causal treatment effects. See, e.g., Imbens and Newey (2009) and the reference

therein for justifications of rank invariance (a stronger version of rank similar-

ity) and Angrist and Imbens (1995) for a justification of monotonicity when

treatment is multi-valued. We focus on discrete instruments since discrete

instruments are widely used.

The parameters of interest include 1) the average effect at a given treatment

quantile, which captures treatment effect heterogeneity at different treatment

intensities and 2) weighted average effects for the largest subpopulation that

respond to the IV change. Identification of the former parameter requires

treatment rank similarity to hold. In contrast, for the latter parameter, we

develop doubly robust estimands that are valid under either monotonicity or

treatment rank similarity. When monotonicity holds, these estimands reduce

to the LATE-type estimands and individuals who respond to the IV change

1See, e.g., Angrist and Imbens (1995) and Fiorini and Stevens (2021) for the discussion of
the testable implication of the LATE-type monotonicity when treatment is multi-valued. See
Dong and Shu (2018) and Frandsen and Lefgren (2018) for tests of the testable implication
of rank similarity.
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can be labeled as compliers, since they change treatment in a monotonic way

(similar to compliers in the classic LATE model with a binary treatment and

binary IV); otherwise, these estimands continue to be valid under treatment

rank similarity, i.e., they continue to identify weighted averages of the average

treatment effects for all individuals that change their treatment values when

the IV changes, even though these individuals no longer respond in a mono-

tonic way. Instead, their treament changes are subject to the rank restriction,

i.e., the probability distribution of their treatment ranks stay the same, which

is a slight generalization of requiring that their treatment rank to be exactly

the same. Since these first-stage restrictions are not verifiable, our doubly

robust estimands identify causal effects for the largest subpopulation while

allowing either of these two assumptions holds true.

Our identification is nonparametric in that we consider non-separable mod-

els for both the first-stage and the outcome equation. Non-separable models

allow for treatment effect heterogeneity and individuals self-selection of dif-

ferent treatment levels based on idiosyncratic gains, both of which are im-

portant features of the data as supported by economic theory and empirical

evidence. For estimation, we opt for convenient semiparametric estimators to

avoid cumbersome fully nonparametric estimation. We establish consistency

and asymptotic normality of our proposed estimators. Lastly we apply our

proposed approach to estimate the impacts of sleep time on individuals’ well-

being using data from a recent field experiment by Bessone et al. (2021). We

show that our doubly robust approach can serve as a valuable tool to corrob-

orate the IV/2SLS estimates.

This paper’s identification approach builds upon two strands of literature

- the LATE literature and the non-separable IV model literature. The LATE

model is proposed in the seminal work of Imbens and Angrist (1994) and is

further extended in Angrist and Imbens (1995), Angrist, Imbens and Rubin

(1996), Angrist, Graddy and Imbens (2000), Abadie (2003), Frölich (2007), de

Chaisemartin (2017), Dahl, Huber, and Mellace (2023), etc. The LATE model

relies on the monotonicity assumption mentioned previously or some weaker

versions of it for causal identification. Many studies in the nonseparable IV
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model literature explore rank invariance or rank similarity in the first stage

for causal identification. See, e.g., Chesher (2001, 2002, 2003, 2005), Imbens

and Newey (2002, 2009), Florens et al. (2008) and more recently Torgovitsky

(2015), and D’Haultfoeuille and Février (2015), among others. In particular,

Torgovitsky (2015), and D’Haultfoeuille and Février (2015) provide detailed

discussions of the identifying power of rank restrictions in the treatment and/or

in the outcome equation. In addition, Masten and Torgovitsky (2016) consider

a random correlated coefficients model and utilize treatment rank invariance

to identify the average partial effect of continuous treatment variables, using

binary or discrete instruments. For the DR identification approach, a few ex-

isting studies take this approach, see, e.g., Dong, Lee, and Gou (2023) and

Arkhangelsky and Imbens (2022). Both papers are set in different frameworks

than the current one. Dong, Lee, and Gou (2023) study the regression discon-

tinuity design, while Arkhangelsky and Imbens (2022) investigate the panel

data model.2

The rest of the paper proceeds as follows. Section 2 presents the DR iden-

tification results for the basic setup with a binary IV and without covariates.

Section 3 extends the identification results to the general setup with covari-

ates. Section 4 proposes convenient partial linear estimators and establishes

their consistency and asymptotic normality. Section 5 discusses extensions to

the case with a multi-valued IV or a vector of discrete IVs, with or without co-

variates; Section 6 presents our empirical analysis. Short concluding remarks

are provided in Section 7.

2 Doubly Robust Identification in the Basic Setup

Let Y ∈ Y ⊂ R be the outcome of interest, e.g., a measure of well-being.

Y can be continuous or discrete. Let T ∈ T ⊂ R be a continuous treatment

2The current paper extends the regression discontinuity setup of Dong, Lee, and Gou
(2023) in multiple directions, including allowing the IV independence and treatment rank
similarity to hold conditional on a vector of continuous and/or discrete covariates, allowing
for a multi-valued IV or a vector of discrete IVs and completely different estimation and
inference procedures.
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variable, e.g., sleep time. Let Z ∈ {0, 1} be a binary IV for T , e.g., an indicator

for being randomly assigned to a group receiving encouragement or financial

incentives to increase night sleep.

To present the core ideas, we subsume all the covariates in this section.

The general setup with covariates is presented in the next section. Assume

that Y and T are generated as

Y = g (T, ε) , (2)

T = h (Z,U) , (3)

where ε captures all the other factors other than T that affect Y , and similarly

U captures all the other reduced-form factors other than Z that affect T . The

outcome disturbance ε ∈ E ⊂ Rdε is allowed to be of arbitrary dimension, so

dε does not need to be finite. Without loss of generality, rewrite eq. (3) as

T = ZT1 (U1) + (1− Z)T0 (U0) , (4)

where Tz (·) , z = 0, 1 are some unknown functions, and the reduced-form dis-

turbance Uz ∈ Uz ⊂ R, z = 0, 1. Later we impose an assumption that

essentially requires Tz (·) to be the quantile functions and Uz to be the rank

variables. Note by construction U = ZU1 + (1− Z)U0.

Define Yt:=g (t, ε) as the potential outcome when T is exogenously set to

be t. Further define Tz:=Tz (Uz), z = 0, 1, as the potential treatment when

Z is exogenously set to be z. Denote the support of Tz as Tz. The observed

treatment is then T = ZT1+(1− Z)T0. We use F· (·) and F·|· (·|·) to denote the

unconditional cumulative distribution function (CDF) and conditional CDF,

respectively.

Assumption 1 (Treatment quantile representation). Tz(u) is strictly increas-

ing in u, and Uz ∼ Unif (0, 1), z = 0, 1.

Assumption 1 requires that the potential treatment Tz is continuous with

a strictly increasing CDF. The condition Uz ∼ Unif (0, 1) involves a nor-

malization. This kind of normalization is necessary, since the identification
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results hold up to a monotonic transformation of Uz, as long as Uz is contin-

uous with a strictly increasing CDF. See discussions in Matzkin (2003) and

more recently Torgovitsky (2015). By Assumption 1, Tz(u) is the u quan-

tile of Tz, and Uz = FTz(Tz) is the rank of the potential treatment. Further,

U = ZU1 + (1− Z)U0 is the observed treatment rank.

Assumption 2 (Independence). Z ⊥ (Uz, ε), z = 0, 1.

Assumption 2 essentially requires Z to be randomly assigned. More gen-

erally, we can allow the independence condition to hold only after condi-

tioning on relevant pre-determined covariates, which we will discuss in the

next session. Assumptions 1 and 2 imply U ⊥ Z, because for z = 0, 1,

Pr (U ≤ τ |Z = z) = Pr (Uz ≤ τ |Z = z) = Pr (Uz ≤ τ) = τ , where the last

equality follows the condition Z ⊥ Uz as implied by Assumption 2.

Assumption 3 (First-stage). T1(u) 6= T0(u) for at least some u ∈ (0, 1).

Assumption 3 requires that the distribution of T changes with Z. Assump-

tion 3 is strictly weaker than the standard first-stage assumption of the LATE

model, which requires E [T1] 6= E [T0]. For example, when the policy instru-

ment Z affects the variance or shifts the tails of the treatment distribution but

otherwise leaves the average treatment level unaffected, we have the standard

LATE first-stage assumption fails, but the above Assumption 3 holds.

Assumption 4 (Monotonicity). Pr (T1 ≥ T0) = 1.

Assumption 4 requires that treatment can only change in one direction

when Z changes - without loss of generality, we normalize it to be non-

decreasing. For example, this assumption holds in the usual linear regression

model of T with a constant coefficient on Z.

Assumption 4 can not be tested directly, but it has testable implications.

It implies T1(u)− T0(u) ≥ 0 for all u ∈ (0, 1), i.e., T1 stochastically dominates

T0. Since stochastic dominance is a necessary but not sufficient condition for

Assumption 4, rejecting stochastic dominance could mean monotonicity does

not hold, but failing to reject does not necessarily mean that monotonicity
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holds. That is, in a given empirical scenario, even we see that the quantile

curve of T1 does not cross the quantile curve of T0, it does not necessarily

mean that Assumption 4 holds. Assumption 4 is essentially not verifiable.

Assumptions 2 - 4 together imply E [T |Z = 1]− E [T |Z = 0] > 0.

For convenience of exposition, we generalize the standard definition of com-

pliers, which is defined for a binary treatment (Angrist, Imbens, and Rubin,

1996). Let Tc = {(t0, t1) ∈ T0×T1 : t1−t0 > 0} be the set of compliers. Define

LATE(t0, t1) := E
[
Yt1−Yt0
t1−t0 |T1 = t1, T0 = t0

]
for any (t0, t1) ∈ Tc. LATE(t0, t1)

is the local average treatment effect for complier type (t0, t1) ∈ Tc. For exam-

ple, in the case of a binary treatment, τWald = LATE(0, 1). More generally

when treatment is continuous as in our setup, τWald is a weighted average of

LATE(t0, t1) for all (t0, t1) ∈ Tc. We formalize this result in the following

lemma.

Lemma 1. Let Assumptions 1-4 hold. Then

τWald =

∫∫
Tc
wt0,t1LATE (t0, t1)FT0,T1 (dt0, dt1)

where wt0,t1 = (t1 − t0) /
∫∫
Tc (t1 − t0)FT0,T1 (dt0, dt1).

The above lemma states that under Assumptions 1-4, τWald in eq. (1)

identifies a weighted average of the average treatment effects for different com-

pliers, where the weights are proportional to their treatment intensity change

(t1 − t0). Frölich (2007) gives a comparable expression when treatment is

multi-valued. Angrist and Imbens (1995) provide a slightly different expres-

sion than that of Frölich (2007), but as pointed out by Frölich (2007), these

expressions are equivalent.3

When g(T, ε) is continuously differentiable in its first argument, the identi-

fied causal parameter can be further expressed as a weighted average derivative

of Y w.r.t. T , following Angrist et al. (2000, Theorem 1). The exact form

of the weighted average derivative is provided in the proof of Lemma 1 in the

3Unlike in Frölich (2007) and here, Angrist and Imbens (1995) present the weighted
average effect in terms of overlapping subpopulations.
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online supplementary appendix.4

In the following, we provide an alternative assumption to Assumption 4,

which allows us to identify causal effects at different treatment quantiles and

further a convexly weighted average effect. This convexly weighted average

effect is in contrast to τWald, which is also a convexly weighted average effect

under Assumption 4 monotonicity.

Assumption 5 (Treatment Rank Similarity). U0|ε ∼ U1|ε.

Assumption 5 assumes that conditional on ε, U0 and U1 follow the same

distribution. Without conditioning on ε, U0 and U1 both follow a uniform

distribution over the unit interval due to normalization, so FU0(u) = FU1 (u) by

construction. Assumption 5 implies ε|U0 = u ∼ ε|U1 = u by Bayes’ theorem,

so ε has the same distribution at the same rank of the potential treatment.

A slightly stronger assumption is rank invariance, which is the condition

U0 = U1. Rank invariance essentially requires that the joint distribution of

T0 and T1 are degenerate. Rank invariance holds trivially when the treatment

model is additively separable in a scalar disturbance, but this assumption does

not require additive separability in general. Rank invariance is frequently im-

posed in the non-separable IV literature. For example, Imbens and Newey

(2009) propose a control variable approach to identify various causal parame-

ters for the non-separable IV model. They assume that in the treatment model

T = h (Z,U), U is a scalar unobservable, and that h (Z, u) is strictly increas-

ing in u with probability 1. Monotonicity in a scalar disturbance implies rank

invariance, because under this assumption, Uz:=FTz (Tz) = FU(u) for any z in

the support of Z. When Z ∈ {0, 1}, it means U0 = U1. In addition to rank

invariance, Imbens and Newey (2009) assume Z ⊥ (U, ε), which is equivalent

to Assumption 2 when rank invariance holds.

Rank similarity in Assumption 5 relaxes rank invariance - instead of assum-

ing the ranks of the potential treatments to be the same, it only assumes that

they have the same conditional probability distribution for any given ε, and

4Our weighted average derivative appears to be different than that of Angrist et al. (2000).
Similar to the point made in Frölich (2007), both are equivalent and the difference lies in
that they express their weighted average derivative in terms of overlapping subpopulations.
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thereby permits random deviations from the common rank level between the

potential treatments. For example, if the common rank level for night sleep

(the actual time one is in sleep as measured by actigraphy) is determined by in-

dividuals’ biological clock (possibly after conditioning on observable covariates

as disscussed in our general setup), which does not change with Z, then rank

similarity permits that the increase in night sleep is subject to some random

factors. Rank similarity was proposed by Chernozhukov and Hansen (2005,

2006) to identify quantile treatment effects in IV models. Note that they im-

pose rank similarity on the ranks of potential outcomes, instead of ranks of

potential treatments.

Lemma 2. Under Assumptions 1, 2 and 5, T ⊥ ε|U .

Lemma 2 suggests that U is a control variable as defined by Imbens and

Newey (2009), i.e., conditional on the observed treatment rank U , T is exoge-

nous to Y . Intuitively, under Assumptions 2 and 5 and holding U fixed, the

only variation in T is the exogenous variation induced by Z.5

Based on Lemma 2, one may condition on U in the outcome equation to

estimate the causal effect of T on Y . Let qz (u) = F−1
T |Z (u|z) be the conditional

u quantile of T given Z = z, and further ∆q (u) = q1 (u)− q0 (u). In addition,

let U = {u ∈ (0, 1) : ∆q (u) 6= 0}. By conditioning on U = u, for any u ∈ U ,

the resulting IV estimand can be written as

τ(u):=
E [Y |Z = 1, U = u]− E [Y |Z = 0, U = u]

E [T |Z = 1, U = u]− E [T |Z = 0, U = u]
. (5)

The numerator captures the reduced-form effect of Z on Y given U = u,

while the denominator captures the first-stage treatment change given U = u.

The corresponding estimator (by replacing the population means and ranks

by their sample analogues) is analogous to the indirect least square estimator

in the linear IV model setting.

5This result is closely related to Theorem 1 of Imbens and Newey (2009), except that
we assume rank similarity instead of rank invariance and that we focus on a binary IV
instead of an IV that may have a large support. The large support is required to identify
structural parameters, like the average structural function (Blundell and Powell, 2003), when
the outcome disturbance is of arbitrary dimension.
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Intuitively, conditional on U = u, with a binary instrument, T potentially

can take two values T0 (u) and T1(u). When T changes exogenously from

T0(u) and T1(u), the corresponding average effect on the outcome E
[
YT1(u) −

YT0(u)|U = u
]

can be identified, as we show in the following Theorem 1. For

notational convenience, let ∆T (u) = T1 (u)− T0(u).

Theorem 1. Let Assumptions 1-3 and Assumption 5 hold. Then for any

u ∈ U ,

τ(u) = E
[
YT1(u) − YT0(u)

∆T (u)
|U = u

]
(6)

=

∫
{g (T1(u), e)− g (T0 (u) , e)} 1

∆T (u)
Fε|U (de|u) . (7)

To see the above results, note

E [Y |Z = 1, U = u] = E [g (T1 (u) , ε) |Z = 1, U = u]

= E [g (T1(u), ε) |U = u]

= E
[
YT1(u)|U = u

]
where the first equality follows from the models of Y and T , (2) and (4), re-

spectively, the second equality follows from the condition Z ⊥ ε|U as shown in

the proof of Lemma 2, and the last equality is by the definition of the poten-

tial outcome. One can similarly show E [Y |Z = 0, U = u] = E
[
YT0(u)|U = u

]
.

That is, we can identify E
[
YTz(u)|U = u

]
for z = 0, 1 and u ∈ U . Ideally

one may wish to recover E [Yt] for any t ∈ T , which is known as the average

dose-response function or the average structural function. However, identi-

fying E [Yt] for any t ∈ T is not possible in our setup, because we have a

binary instrument and we do not restrict the dimensionality of the outcome

disturbance, i.e., we do not impose rank invariance in the outcome model.

Theorem 1 shows that τ(u) identifies an average (per unit) treatment effect

at the u quantile of the treatment. τ(u) measures treatment effect heterogene-

ity at different treatment intensities, which can be useful. The denominator in
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eq. (6) reflects the fact that Tz (u) /∈ {0, 1} in general. Inside of the integral

in eq. (7), T exogenously changes from T0(u) to T1(u) while holding ε fixed at

e, so τ(u) is causal from a ceteris paribus point of view.

By eq. (4) and Assumption 1, U and T follow a one-to-one mapping given

Z = z, i.e., conditioning on U = u is the same as conditioning on T = Tz (u).6

Further by Assumption 2, Tz (u) = qz (u). Let the conditional mean function

of Y given Z and T be mz(t) = E [Y |Z = z, T = t], z = 0, 1. Then τ(u) in eq.

(5) can be re-written as

τ(u) =
m1(q1(u))−m0(q0(u))

q1 (u)− q0 (u)
. (8)

Later our estimation is directly based on eq. (8).

Oftentimes, researchers or policy makers are interested in some summary

measure of the overall treatment effect. With τ(u), one can further identify

and estimate a weighted average of τ (u), i.e.,

τRS (w) :=

∫
U
τ(u)w(u)du

for any known or estimable weighting function w(u) such that w(u) ≥ 0 and∫
U w(u)du = 1. The weighting function w(u) is required to be non-negative;

otherwise, τRS (w) can be a weighted difference of the average treatment effects

for units. For example, if U = (0, 1), and one chooses w(u) = 1, then τRS (w) =

E [τ(U)].

τRS (w) is a weighted average of the average treatment effects at all treat-

ment quantiles where treatment changes under Assumption 5, treatment rank

similarity. By Lemma 1, τWald is a weighted average of the average treat-

ment effects for all compliers under Assumption 4, monotonicity. Note that

both assumptions impose restrictions on the first-stage IV effect heterogene-

ity - monotonicity imposes a sign restriction, while treatment rank similarity

imposes a rank restriction. Neither assumption implies the other. Neither as-

sumption is verifiable. In practice, it is not ideal to have to choose one versus

6The σ-algebra is the same.
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the other estimand based on some pre-testing results. We therefore consider a

weighting function that leads to a DR property of the resulting estimand, i.e.,

the estimand is valid under either of the two alternative identifying assump-

tions.

Proposition 1. Let Assumptions 1-3 hold. If either Assumption 4 or Assump-

tion 5 holds, then τDR:=
∫
U τ(u)wDR(u)du for wDR(u) = |∆q (u) |/

∫
U |∆q (u) |du

identifies a weighted average of the average treatment effects among units for

which T1 6= T0.

Proposition 1 combines the results of Lemma 1 and Theorem 1. It shows

that under either first-stage restriction on the IV effect heterogeneity, τDR

identifies a weighted average of the average effects for all the units that respond

to the IV change. These units represent the largest subpopulation one can

identify causal effects for without any further restrictions. The two alternative

first-stage assumptions specify exactly how these units respond - either they

change treatment in a monotonic way or they change treatment such that the

probability distribution of their treatment ranks remains the same.

When Assumption 4 monotonicity holds, wDR(u) = ∆q (u) /
∫
U ∆q (u) du.

Then

τDR =

∫ 1

0
{E [Y |Z = 1, U = u]− E [Y |Z = 0, U = u]} du∫ 1

0
∆q (u) du

=
E [Y |Z = 1]− E [Y |Z = 0]

E [T |Z = 1]− E [T |Z = 0]

= τWald

That is, τDR reduces to the standard LATE estimand τWald given by eq. (1)

when monotonicity holds. By Lemma 1, in this case τDR identifies a weighted

average of the average treatment effects for different compliers. Otherwise,

when Assumption 4 monotonicity does not hold, but Assumption 5 rank sim-

ilarity holds, τDR is a weighted average of τ(u) for u ∈ U , and by Theorem 1,

τ(u) captures the average treatment effects at the u quantile of treatment. Ei-

ther way, τDR identifies a weighted average of the average treatment effects for
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all the units that change their treatment levels in response to the IV changes.

The weights are proportional to the magnitude of their treatment changes.

The weighting function in Proposition 1 allows ∆q (u) to change signs,

which in fact indicates that the LATE monotonicity condition does not hold.

As a result, τDR may average over two different types of units, those who

increase their treatment levels and those who decrease their treatment levels

when the IV changes.7 Ideally one may want to separately consider these two

types of units. However, individual types are not point identified, so point

identification of causal effects over different individual types is not possible.

As a mitigation measure, if desired, one may separately consider treatment

quantiles where ∆q (u) > 0 and those where ∆q (u) < 0.

Let U+={u ∈ U : ∆q (u) > 0}. Define τDR+ :=
∫
U+ τ(u)w+(u)du, where

w+(u) = ∆q (u) /
∫
U+ ∆q (u) du. τDR+ can be rewritten as the ratio of the mean

outcome difference over u ∈ U+ to the mean treatment difference over u ∈ U+,

i.e.,

τDR+ =

∫
U+

∫
{g (T1 (u) , e)− g (T0(u), e)}Fε|U (de|u) du∫

U+ ∆T (u)du
.

τDR+ carries a similar interpretation as that of τDR but is only for the subset of

treatment quantiles u ∈ U+.8 In particular, when either monotonicity or treat-

ment rank similarity holds over U+, τDR+ identifies a weighted average of the av-

erage treatment effects for all the responding (to IV changes) units associated

with this subset of quantiles. Similarly, one can define τDR− :=
∫
U− τ(u)w−(u)du,

where U−= {u ∈ U : ∆q (u) < 0} and w−(u) = ∆T (u)/
∫
U− ∆q (u) du.

So far, we have focused our discussion on (weighted) average effects. One

may extend the above identification results to identify distributional effects

at a given treatment quantile u ∈ U . In particular, under Assumptions 1-3

7This issue is not unique to our setting. This issue would arise whenever a research
estimates some average effects, but does not assume that the treatment change cannot
switch signs.

8Under treatment rank invariance, monotonicity holds automatically if treatment quan-
tile changes do not switch signs. This is not true in general. Intuitively under rank invari-
ance, U1 = u implies U0 = u and vise versa; however, under treatment rank similarity (but
not rank invariance), individuals counterfactual treatment rank is not point identified, and
hence monotonic treatment quantile changes do not gurantee individual level monotonicity.
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and Assumption 5, for any u ∈ U , FYTz(u)|U (y|u) = E[1(Y ≤ y)|U = u, Z =

z], z = 0, 1. Let the conditional quantile function of YTz(u) given U = u

be F−1
YTz(u)|U=u (ũ) for ũ ∈ (0, 1) and z = 0, 1. The corresponding reduced-

form quantile treatment effect is given by F−1
YT1(u)|U=u (ũ) − F−1

YT0(u)|U=u (ũ) for

any ũ ∈ (0, 1) and u ∈ U . Replacing Y by 1 (Y ≤ y) in Theorem 1 and

further in Proposition 1 leads to the DR estimand for the weighted average

effect of T on 1 (Y ≤ y) for all y ∈ Y . It is worth emphasizing that our goal

is to develop robust identification results in the presence of both treatment

effect heterogeneity and instrument effect heterogeneity. Whether any of these

proposed weighted averages are of interest depends on empirical scenarios.

3 Doubly Robust Identification with Covariates

The previous section presents our core idea without considering covariates. IV

independence and rank similarity may be more plausible when conditioning

on relevant pre-determined covariates. For this claim on rank similarity, see

e.g., discussion in Chernozhukov and Hansen (2005, 2006). If covariates enter

the non-separable models for Y and T , i.e., (2) and (3), and all the previous

assumptions hold conditional on covariates, then it follows readily that all

the previous results hold conditional on covariates. However, such conditional

results may not be very useful in practice, as it can be unwieldy to present all

the conditional results if there are many covariates and worse many continuous

covariates. In this section, we seek to directly identify unconditional weighted

average effects as before while allowing for covariates.

Let X ∈ X ⊂ RdX denote the vector of covariates. We do not require X

to be exogenous. We consider the following models for Y and T :

Y = G (T,X, ε) , (9)

T = H(Z,X, V )

= ZT1 (X, V1) + (1− Z)T0 (X, V0) , (10)

where by construction V = V1Z + V0 (1− Z).
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As before, Tz:=Tz (X, Vz) is the potential treatment Z is exogenously set

to be z ∈ {0, 1} and Yt:=G (t,X, ε) is the potential outcome when T is exoge-

nously set to be t ∈ T ⊂ R. We extend Assumptions 1, 2, 3 and 5 to condition

on covariates X as follows.9

Assumption C1 (Conditional Treatment Quantile). For any x ∈ X , Tz(x, v),

z = 0, 1, is strictly increasing in v, and Vz ∼ Unif (0, 1).

By Assumption C1, Tz (x, v) is the conditional quantile function of Tz given

X, and Vz = FTz |X (Tz|X) is the conditional rank of Tz given X.

Assumption C2 (Conditional Independence). Z ⊥ (Vz, ε) |X, z = 0, 1.

Assumption C3 (Conditional First-stage). Tz (x, v) 6= Tz (x, v) for at least

some x ∈ X and v ∈ (0, 1).

Assumption C4 (Common Support). Pr (Z = 1|X = x) ∈ (0, 1) for any x ∈
X .

Assumption C5 (Conditional Treatment Rank Similarity). V1|(ε,X) ∼ V0|(ε,X).

Assumption C2 requires Z to be unconfounded, instead of being randomly

assigned as required by Assumption 2. Assumption C4 is a common support

assumption to ensure our parameters are well-defined. In addition, Assump-

tion C5 requires that treatment rank similarity holds only among the subgroup

of units with the same observed covariate values, which is weaker than Assump-

tion 5.10. The following Lemma extends Lemma 2 to allow for covariates.

9We do not extend Assumption 4 monotonicity, as little will be changed from the identi-
fication perspective. For example, one way to relax Assumption 4 is to assume that either
Pr (T1 ≥ T0|X = x) = 1 or Pr (T1 ≤ T0|X = x) = 1 for any x ∈ X . Since the sign of the
first-stage change is identified from the data given the assumptions here, for those covari-
ate values at which treatment change is negative when Z changes from 0 to 1 (consistent
with Pr (T1 ≤ T0|X = x) = 1), one may change the observed value Z = 1 to Z = 0 and
similarly Z = 0 to Z = 1, so that after the switch, the condition Pr (T1 ≥ T0|X = x) = 1
for any x ∈ X holds, which then is essentially the same as having Pr (T1 ≥ T0) = 1. Our
identification results in this section would go through with this rearranging values of Z.

10Note that Vz is defined conditionally on X, while Uz is defined uncondition-
ally. Given that X are determinants of Y , one can let X be an observable sub-
vector of ε in Y = g (T, ε). That is, ε = (X, ε). Assumption 5 U1|ε ∼ U0|ε
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Lemma 3. Under Assumptions C1-C3 and C5, T ⊥ ε| (V,X).

Lemma 3 is a conditional (on X) version of Lemma 2. So V is a control

variable given X. Let qz (v, x) = F−1
T |Z,X (v|z, x) be the conditional v quantile

of T given Z = z and X = x. Let ∆q(x, v) = q1 (v, x)− q0 (v, x). Assumptions

C1 and C4 ensure that ∆q(x, v) is well defined for all x ∈ X and v ∈ (0, 1).

Further let S = {(x, v) ∈ X×(0, 1): ∆q(x, v) 6= 0}. The resulting IV estimand

by conditioning on X = x and V = v can be defined as

π(x, v):=
E [Y |Z = 1, X = x, V = v]− E [Y |Z = 0, X = x, V = v]

E [T |Z = 1, X = x, V = v]− E [T |Z = 0, X = x, V = v]
(11)

for any (x, v) ∈ S. By eq. (10) and Assumption C1, T and V follow a one-

to-one mapping given Z = z and X = x, i.e., conditioning on V = v is the

same as conditioning on T = Tz (x, v) in (11). Further by Assumption C2,

Tz (x, v) = qz (x, v). Then π(x, v) can be re-written as

π(x, v) =
m1(x, q1(x, v))−m0(x, q0(x, v))

q1 (x, v)− q0 (x, v)
,

where mz(x, t) = E [Y |Z = z,X = x, T = t].

Let ∆T (x, v) = T1(x, v) − T0(x, v). We have the following Theorem 2,

which extends Theorem 1.

Theorem 2. Let Assumptions C1-C5 hold. Then for any (x, v) ∈ S,

π(x, v) = E
[
YT1(x,v) − YT0(x,v)

∆T (x, v)
|X = x, V = v

]
(12)

=

∫
{G (T1(x, v), x, e)−G (T0(x, v), x, e)}

Fε|X,V (de|x, v)

∆T (x, v)
. (13)

implies U1|X ∼ U0|X, so FU1|X (u|x) = FU0|X (u|x) for any u ∈ (0, 1) and
x ∈ X . It follows that FV0|X,ε (v|X = x, ε = e) = E [1 (V0 ≤ v) |X = x, ε = e] =

E
[
1
(
FU0|X (U0|x) ≤ v

)
|X = x, ε = e

]
= E

[
1
(
FU1|X (U1|x) ≤ v

)
|X = x, ε = e

]
=

FV1|X,ε (v|X = x, ε = e) for any v, x, and e in their support, where the second equal-
ity follows from Vz = FTz|X (Tz|X) by Assumption C1, which can be further written as
Vz = FUz|X (Uz|X), z = 0, 1, since Tz and Uz follow a one-to-one mapping by Assumption
1. Therefore, V0|X, ε ∼ V1|X, ε.
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By Theorem 2, π(x, v) identifies a conditional weighted average treatment

effect at the conditional v quantile of the treatment given X = x. By eq. (13),

it is clear that π(x, v) represents the causal effect of an exogenous change in

treatment from T0 (x, v) to T1(x, v), while holding X and ε fixed at x and e.

If desired, one may average π(x, v) over the distribution of X to ob-

tain a weighted average effect at the conditional v quantile of the treatment.

For notational convenience, in the following, we assume π(x, v) = 0 when

∆q(x, v) = 0, so that π(x, v) is defined for all (x, v) ∈ X× (0, 1). For example,

for any v ∈ (0, 1) such that Pr (∆q(X, v) 6= 0) > 0, one can define

π (v) :=

∫
X
π(x, v)wv(x)dx,

where wv(x) = |∆q(x, v)|fX (x) /
∫
X |∆q(x, v)|fX(x)dx. π (v) identifies a weighted

average effect at the conditional v quantile of the treatment. In contrast, τ(u)

identifies an average effect at the unconditional u quantile of the treatment.

π (v) can be useful in investigating treatment effect heterogeneity at the con-

ditional v quantile of the treatment.

Consider now constructing a DR estimand for the overall unconditional

weighted average effect based on π(x, v). Since Z is valid only after condition-

ing on pre-determined covariates, τWald is no longer a valid causal estimand.

Define

τWald X :=

∫
X {E [Y |Z = 1, X = x]− E [Y |Z = 0, X = x]} fX (x) dx∫
X {E [T |Z = 1, X = x]− E [T |Z = 0, X = x]} fX(x)dx

. (14)

The numerator of eq. (14) does not reduce to E [Y |Z = 1] − E [Y |Z = 0] and

similarly the denominator of eq. (14) does not reduce to E [T |Z = 1, X = x]−
E [T |Z = 0, X = x], as X is not required to be independent of Z, and hence

the distribution of X given Z = 0 and that given Z = 1 are different in gen-

eral. Nevertheless, the following lemma shows that τWald X identifies the same

unconditional effect as what τWald would if Z were valid without conditioning

on covariates.
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Lemma 4. Let Assumptions C1 - C4 and further Assumption 4 hold. Then

τWald X =

∫∫
Tc
wt0,t1LATE (t0, t1)FT0,T1 (dt0, dt1)

where wt0,t1 = (t1 − t0) /
∫∫
Tc (t1 − t0)FT0,T1 (dt0, dt1).

Frölich (2007) presents a comparable result for a binary or discrete treat-

ment. Our DR estimand below incorporates τWald X (instead of its invalid

counterpart τWald) as a special case.

Proposition 2. Let Assumptions C1 - C4 hold. When further either 4 or C5

holds,

πDR:=

∫∫
S
π(x, v)w (x, v) dvdx

for w(x, v) = |∆q(x, v)|fX(x)/
∫∫
S |∆q(x, v)|fX(x)dvdx identifies a weighted

average of the average treatment effects among all the units for which T1 6= T0.

When Assumption C5 conditional rank similarity holds, πDR is a weighted

average of π (x, v) for (x, v) ∈ S, which by Theorem 2, is a causal estimand;

Otherwise, when Assumption 4 monotonicity holds, πDR = τWald X , which we

show in Lemma 4 identifies a weighted average of LATE(t0, t1) for (t0, t1) ∈ Tc.
Either way, πDR identifies a weighted average of the average treatment effects

for all the units responding to the IV change, the largest subpopulation one

can identify treatment effects without further assumptions. The weights are

proportional to both the magnitude of the treatment change and the density

of X.

Let S+ = {(x, v) ∈ X × (0, 1): ∆q(x, v) > 0} and S− = {(x, v) ∈ X ×
(0, 1): ∆q(x, v) < 0}. Define

πDR+ :=

∫∫
S+
π(x, v)w+(x, v)dvdx, (15)

where w+(x, v) = ∆q(x, v)f(x)/
∫∫
S+ ∆q(x, v)f(x)dvdx. πDR+ identifies a weighted

average of the average treatment effects for all the responding units with

(x, v) ∈ S+, when either monotonicity or conditional treatment rank similar-
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ity holds for S+. πDR− can be analogously defined by replacing w+(x, v) with

w−(x, v) and S+ with S− in eq. (15) respectively. πDR− identifies a weighted

average of the average treatment effects for units experiencing negative treat-

ment changes, regardless of whether they stay at the same treatment rank or

not.

4 Estimation and Inference

For estimation and inference, we focus on the general setup with covariates. To

avoid cumbersome fully nonparametric estimation, we assume that covariates

enter linearly and propose convenient semi-parametric estimation. We briefly

discuss the practical implications of the additional functional form assumptions

required in our estimation toward the end of this section. The estimation

without covariates can be seen as a special case of that with covariates.

4.1 Estimation

We assume a linear quantile regression model for the conditional v quantile of

T given Z = z and X = x, i.e., qz (x, v) = a0(v) + x′a1(v) + za2(v) + zx′a3(v);

we further assume a partially linear model for the conditional mean function

of Y given Z, X and T , i.e., mz(x, t) = x′b0 + g0(t) + zx′b1 + zg1(t), where

gz, z = 0, 1, are some unknown functions. Given a sample of i.i.d. observa-

tions {(Yi, Ti, Xi, Zi)}ni=1 for (Y, T,X, Z), we propose the following estimation

procedure.

Step 1. Estimate the first-stage conditional treatment quantiles qz(x, v):

• q̂z (x, v) = â0(v) + x′â1(v) + zâ2(v) + zx′â3(v)

for v ∈ V (l), where V (l) = {v1, v2, ..., vl} is the set of equally spaced

quantiles over (0, 1).

Then ∆q̂(x, v) = â2(v) + x′â3(v).

Step 2. Estimate the conditional mean function mz(x, t) by a partially linear

series estimator:
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• m̂z(x, t) = x′b̂0 + ĝ0(t) + zx′b̂1 + zĝ1(t)

Let ∆m̂(Xi, v) = m̂1(Xi, q̂1(Xi, v))− m̂0(Xi, q̂0(Xi, v)).

Step 3. Assume that the trimming parameter %n is a positive sequence that

goes to % = 0 as n→∞. For v ∈ V (l) and i = 1, ..., n, the plug-in estima-

tor of π(Xi, v) is π̂(Xi, v) = ∆m̂(Xi, v)/∆q̂(Xi, v) when |∆q̂(Xi, v)| ≥ %n.

Let π̂(Xi, v) = 0 when |∆q̂(Xi, v)| < %n.

• Estimate π(v) for v ∈ V (l) such that
∑

i 1
(
|∆q̂(Xi, v)| ≥ %n

)
6= 0:

π̂(v) =
∑

i π̂(Xi, v)ŵv (Xi), where ŵv (Xi) = |∆q̂(Xi,v)|1(|∆q̂(Xi,v)|≥%n)∑
i |∆q̂(Xi,v)|1(|∆q̂(Xi,v)|≥%n)

• Estimate πDR: π̂DR =
∑

v∈V (l)

∑
i π̂(Xi, v)ŵ (Xi, v),

where ŵ (Xi, v) = |∆q̂(Xi,v)|1(|∆q̂(Xi,v)|≥%n)∑
v∈V (l)

∑
i |∆q̂(Xi,v)|1(|∆q̂(Xi,v)|≥%n)

.

One may estimate πDR+ or πDR− analogously by replacing |∆q̂(Xi, v)| with

∆q̂(Xi, v) or −∆q̂(Xi, v), respectively. The following provides details on the

partial linear series estimator in Step 2. Let {ψJ1, ..., ψJJ} be a collection

of basis functions of t for approximating the nonparametric component gz(t).

Let ψJ(x, t, z) =
(
x′, ψJ1(t), ..., ψJJ(t), zx′, zψJ1(t), ..., zψJJ(t)

)′
, a 2(dx+J)×1

vector. Let Ψ = (ψJ(X1, T1, Z1), ..., ψJ(Xn, Tn, Zn))′, a n × 2(dx + J) matrix.

Then the series coefficient estimate is ĉ = [Ψ′−Ψ′(Y1, ..., Yn)′, and a series least

squares estimator of mz(x, t) is m̂z(x, t) = ψJ(x, t, z)′ĉ.

For the trimming parameter %n, one may choose %n = 1.96×minv∈V (l),{Xi}ni=1

se(∆q̂(Xi, v))/ log(n). This %n satisfies the rate condition required by our

asymptotic theory as that given in Theorems 3 and 4 in Section 4.2.

4.2 Asymptotic Theory

This section presents inference results for π(v) and πDR. Inference results for

the other parameters π(x, v) and πDR± are presented in Section S.2 and Section

S.3, respectively, in the online supplementary appendix.

We derive the asymptotic theory based on the literature of quantile regres-

sion and sieve estimation. The main complication here is that we need to ac-

count for the variation from the Step 1 quantile regression and Step 2 sieve esti-

mation, as well as the trimming function. Let a(v) = (a0(v), a′1(v), a2(v), a′3(v))′
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be the quantile coefficients in Step 1. For the quantile regression estima-

tor â(v), we apply the results of Angrist, Chernozhukov, and Fernández-Val

(2006). They show that â(v) converges uniformly over v in a closed subset of

(0, 1) to a zero mean Gaussian process indexed by v. For the partially linear

estimation in Step 2, we apply the results of Chen and Christensen (2018).

They establish uniform inference for nonlinear functionals of nonparametric

IV regression. We apply their results for a special case of exogenous regressors

and linear functionals. Our assumptions for asymptotics collect the assump-

tions in these two papers.

Assumption A1 collects the conditions in Theorem 3 in Angrist, Cher-

nozhukov, and Fernández-Val (2006).

Assumption A1. The conditional density fT |X,Z(t|x, z) is bounded and uni-

formly continuous in t, uniformly for x ∈ X , z = 0, 1. E [‖X‖3] < ∞. Let

ϑ(v):=E[fT |X,Z(S ′a(v)|X,Z)SS ′], where S:=(1, X ′, Z, ZX ′)′, be positive defi-

nite for all v ∈ V which is a closed subset of (0, 1).

Let e = Y − E [Y |Z,X, T ]. Let G = E
[
ψJ(X,T, Z)ψJ(X,T, Z)′

]
=

E [Ψ′Ψ/n] be positive definite for each J . Let Ω = E
[
e2ψJ(X,T, Z)ψJ(X,T, Z)′

]
and 0 = G−1ΩG−1.

Let L∞(T ) denote the set of all bounded measurable functions g : T → R
endowed with the sup-norm ‖g‖∞ = supt |g(t)|. Let ‖ · ‖`q denote the vector

`q-norm when applied to vectors and the operator norm induced by the vector

`q-norm when applied to matrices. If {an} and {bn} are sequences of positive

numbers, then we say an . bn if lim supn→∞ an/bn <∞.

Consider a collection of linear functionals {L` : ` ∈ L} with an index

set L. For example, for the conditional mean function mz(x, t), one can let

L`(mz) = mz(x, t) with ` = (x, t) ∈ L = X ×T , for z = 0, 1. Assumptions A2

and A3 below collect the assumptions in Chen and Christensen (2018).

Assumption A2. 1. (i) (X,T ) have compact rectangular support XT ⊂
Rdx+1 and the density of (X,T ) is uniformly bounded away from 0

and ∞ on XT .
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(ii) For z = 0, 1, mz ∈ H ⊂ L∞(X,T ). The sieve space for (X,T )

is the closed linear span ΨJ = clsp{ψJ1, ..., ψJJ} ⊂ L2(X,T ), and

∪JΨJ is dense in (H, ‖ · ‖L∞(X,T )).

2. (i) E
[
|ei|2+δ

]
<∞ for some δ > 0.

(ii) E
[
|ei|3|Zi = z,Xi = x, Ti = t

]
< ∞ and E

[
e2
i |Zi = z,Xi = x, Ti =

t
]
∈ [σ2, σ̄2] for some finite and positive constants (σ2, σ̄2), uni-

formly for (x, t) ∈ XT , for z = 0, 1.

3. (i) ΨJ is Hölder continuous: there exist finite constants C ≥ 0, C̃ > 0

such that ‖G−1/2{ψJ(x, t, z)− ψJ(x̃, t̃, z)}‖`2 . JC‖(x, t)− (x̃, t̃)‖C̃`2
for t, t̃ ∈ T , x, x̃ ∈ X , z = 0, 1.

(ii) Let ζ:=supx,t,z ‖G−1/2ψJ(x, t, z)‖`2 satisfy ζ2/
√
n = O(1) and ζ(2+δ)/δ√

(log n)/n = o(1).

4. (i) Let σ2
n(L`) = L`(ψ

J)′0L`(ψ
J) ↗ +∞ as n → ∞ for each ` ∈ L.

Let ηn be a sequence of nonnegative numbers such that ηn = o(1).

Let m̃z(x, t) = ψJ(x, t, z)′c̃ where c̃ = (Ψ′Ψ)−Ψ′
(
mZ1(X1, T1), ...,

mZn(Xn, Tn)
)′

and sup`∈L
√
n|L`(m̃z(x, t))−L`(mz(x, t))|/σn(L`) =

Op(ηn).

(ii) Let un(L`)(Xi, Ti, Zi) = ψJ(Xi, Ti, Zi)
′−1L`(ψ

J)/σn(L`) be the nor-

malized sieve Riesz representer. Let dn(`1, `2) =
(
E
[
(un(L`1)(Xi, Ti,

Zi)−un(L`2)(Xi, Ti, Zi))
2
])1/2

be the semimetric on L. Let N(XT ,
dn, ς) be the ς-covering number of XT with respect to dn. There is

a sequence of finite constant cn & 1 that could grow to infinity such

that 1 +
∫∞

0

√
logN(XT , dn, ς)dς = O(cn).

(iii) Let δm,n be a sequence of positive constants such that ‖m̂z−mz‖∞ =

Op(δm,n) = op(1). Define δV,n:=
(
ζ(2+δ)/δ

√
(log J)/n

)δ/(1+δ)
+ δm,n+

ζ
√

(log J)/n. There is a sequence of constant rn > 0 decreasing

to zero slowly such that (a) rncn . 1 and ζJ2/(r3
n

√
n) = o(1), (b)

ζ
√

(J log J)/n+ ηn + δV,ncn = o(rn).

Assumption A3. Let J
√

(J log J)/n = o(1). Let Bp
∞,∞ denote the Hölder

space of smoothness p > 0 and ‖ · ‖Bp
∞,∞ denote its norm. Let B∞(p, L) =
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{m ∈ Bp
∞,∞ : ‖m‖Bp

∞,∞ ≤ L} denote a Hölder ball of smoothness p > 1 and

radius L ∈ (0,∞). Let m ∈ B∞(p, L) and ΨJ be spanned by a B-spline basis

of order γ > p or a CDV wavelet basis of regularity γ > p.

Assumption A3 ensures the uniform consistency of ∂tm̂z(x, t) = ∂m̂z(x, t)/∂t,

which is used to account for the Step 1 estimation error.

We show in Theorem 3 below that under Assumptions A1, A2, and A3,

the influence function of π̂(v) is given by Ri(v)/B(v) = (R1i(v) + R2i(v) +

R3i(v))/B(v), where R1i(v) captures the impact of Step 1, R2i(v) captures

the impact of Step 2, R3i(v) is the influence function for the sample analogue

estimator of π̂(v) (without accounting for the step 1 and step 2 estimation

errors) in Step 3, and B(v) is from the normalization in the weighting function.

The exact formulas of Rki(v), k = 1, 2, 3, are given in (S.9) in the online

supplementary appendix. Let σ2
n(v) = E [Ri(v)2] /B(v)2, which is the sieve

variance of
√
nπ̂(v). Further let σ̂2(v) be a uniformly consistent estimator

of σ2
n(v) in the sense that supv∈V% |σn(v)/σ̂(v) − 1| = op(1) for a closed set

V% = {v ∈ V : Pr(|∆q(X, v)| > %) > 0}. For example, σ̂2(v) can be estimated

by the sample analogue plug-in estimator, i.e., σ̂2(v) = n−1
∑n

i=1 R̂i(v)2/B̂(v)2,

where R̂i(v) and B̂(v) are uniformly consistent estimators of Ri(v) and B(v),

respectively. We give the estimation detail of σ̂2(v) in Section S.4 in the online

supplementary Appendix.

Theorem 3. Let Assumptions A1, A2, and A3 hold. Let
√
n(%n − %) =

o(1). Then
√
n
(
π̂(v)−π(v)

)
/σ̂(v) = n−1/2

∑n
i=1 Ri(v)/(B(v)σn(v))+op(1)

d−→
N (0, 1) uniformly for v ∈ V%.

A 100(1− α)% confidence interval for π(v) can be constructed as
[
π̂(v)−

z∗1−ασ̂(v)/
√
n, π̂(v) + z∗1−ασ̂(v)/

√
n
]
, where z∗1−α = Φ−1(1 − α/2) is the 1 −

α/2 quantile of the standard normal distribution, based on the asymptotically

normal approximation.

Similarly Theorem 4 shows that under Assumptions A1, A2, and A3,

the influence function of π̂DR is given by Ri/B = (R1i + R2i + R3i)/B. The

exact formulas of Rki, k = 1, 2, 3, are given in (S.8) in the online supplementary
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appendix. Let σ2
n = E [R2

i ] /B
2, which is the sieve variance of

√
nπ̂DR. Further

let σ̂2 be a consistent estimator of σ2
n such that |σn/σ̂ − 1| = op(1).

Theorem 4. Let Assumptions A1, A2, and A3 hold. Let
√
n(%n − %) =

o(1) and
√
nl−1 = o(1). Then

√
n
(
π̂DR − πDR

)
/σ̂ = n−1/2

∑n
i=1Ri/(Bσn) +

op(1)
d−→ N (0, 1).

Based on Theorem 4, a 100(1 − α)% confidence interval for πDR can be

constructed as
[
π̂DR − z∗1−ασ̂/

√
n, π̂DR + z∗1−ασ̂/

√
n
]
.

Note that our semiparametric estimation imposes certain functional form

assumptions. Causal interpretation of the estimated parameters require these

additional functional forms to hold. In theory, fully nonparametric estimation

and inference is possible. For example, in Step 1, one can use the nonparamet-

ric QR series in Belloni et al. (2009), and in Step 2, one can follow Chen and

Christensen (2018) to estimate a fully nonparametric mean regression. Our

asymptotic theory for π̂(v) and π̂ can then be extended to the correspond-

ing nonparametric estimators at the cost of more complicated notations and

stronger regularity conditions.

When monotonicity (along with other identifying assumptions) holds, πDR =

τWald X . So if the assumed semiparametric functional forms are true or if both

are non-parametrically estimated, the two estimators converge to the same

causal parameter and hence the corresponding estimates should be similar in

large samples. Seeing the estimates very different may suggest that mono-

tonicity does not hold (assuming other identifying assumptions hold). When

monotonicity does not hold, the usual Wald ratio estimator, even when it

is well-defined (or the denominator is not zero), is not consistent, while our

estimator can be consistent for a well-defined causal parameter.

5 Extensions to a Multi-valued IV or Multiple IVs

In this section we briefly discuss extensions of identification, estimation and

inference to the case of a multi-valued IV or a vector of discrete IVs.11 We
11Mogstad et al. (2021) show that the LATE monotonicity may not be plausible with

multiple IVs for a binary treatment. This conclusion is generalizable to a continuous treat-
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first consider the basic setup without covariates and then discuss the general

setup with covariates.

Assume T = g (T, ε) and T = h (Z,U) as in Section 2. Denote the support

of Z as Z = {z0, z1, ..., zK}. So e.g., if Z = (Z1, Z2), where Z1 ∈ {0, 1}
and Z2 ∈ {0, 1}, then one can let z0 = (0, 0), z1 = (0, 1), z2 = (1, 0), and

z3 = (1, 1). Let Uk = FTzk (Tzk) be the rank of the potential treatment Tzk
if Z is exogenously set to be zk. The observed rank can be written as U =∑K

k=1 1 (Z = zk)Uk. Let Tzk(u) be the u quantile of the potential treatment

Tzk . Further let rk = Pr (Z = zk), p (Z) = E [T |Z], pk = E [T |Z = zk], and

p = E [T ]. Without loss of generality, assume that the K + 1 values of Z is

ordered such that pk ≥ pk−1 for k = 1, ..., K, which may involve rearranging

and is verifiable from the data.

We continue to use the same sets of assumptions when we consider either

the basic setup without covariates or the general setup with covariates, ex-

cept that the relevant assumptions need to be modified to accommodate the

greater support of Z, which is Z = {z0, z1, ..., zK}. For example, Assump-

tion 1 now requires that Tzk(u) is strictly monotonic in u for any zk ∈ Z,

and that Uk ∼ Unif (0, 1) for k = 0, ..., K, and Assumption 2 independence

now requires Z ⊥ (Uk, ε) for k = 0, ..., K. The same holds true for As-

sumptions C1 and C2. Further Assumptions 3 and 4, and 5, and similarly

Assumptions C3 and C5 need to hold for each pair of IV values zk and zk−1

for k = 1, ..., K. That is, Assumption 3 now requires that Tzk(u) 6= Tzk−1
(u)

for k = 1, ..., K and at least some u ∈ (0, 1). Assumption 4 monotonicity now

states that Pr
(
Tzk ≥ Tzk−1

)
= 1, k = 1, ..., K. Assumption 5 now requires

that Uk|ε ∼ Uk−1|ε, k = 1, ..., K. The same holds true for Assumption C3 and

Assumption C5. In addition, Assumption C4 common support now requires

Pr (Z = zk|X = x) ∈ (0, 1) for k = 0, ..., K and any x ∈ X .

Define the following estimand for each pair of the IV values {zk−1, zk},

ment. While they seek to provide a causal interpretation for the usual two stage least square
(2SLS) estimand under a weaker partial monotonicity condition (i.e., monotonicity holds
with one IV while holding other IVs fixed), we provide an estimand that is robust to the
failure of the LATE monotonicity assumption.
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k = 1, ...K,

τ k(u):=
E [Y |Z = zk, U = u]− E [Y |Z = zk−1, U = u]

E [T |Z = zk, U = u]− E [T |Z = zk−1, U = u]

if the denominator is not zero; otherwise, define τ k(u):=0. Like before, T and

U follow a one-to-one mapping given Z = zk, so conditioning on U = u is

the same as conditioning on T = Tzk(u). Further given Z ⊥ (Uk, ε), we have

Tzk(u) = qk(u), where qk(u) = F−1
T |Z (u|zk) is the conditional u quantile of T

given Z = zk. Then τ k(u) can be re-written as

τ k(u) =
E [Y |Z = zk, T = qk(u)]− E [Y |Z = zk−1, T = qk−1(u)]

qk(u)− qk−1(u)
.

Following Theorem 1, τ k(u) identifies an average treatment effect at the u

quantile of treatment for units responding to the IV change from zk−1 to zk.

Analogous to Proposition 1, define a DR estimand for each pair of IV

values. In particular, let ∆qk(u) = qk(u) − qk−1(u), k = 1, ..., K. The corre-

sponding DR estimand is given by

τDRk :=

∫ 1

0

τ k(u)wk (u) du,

where wk(u) = |∆qk(u)|∫ 1
0 |∆qk(u)|du

. τDRk identifies a weighted average of the average

treatment effect for all units that respond to the IV change from zk−1 to zk,

under either monotonicity or rank similarity. Construct an aggregated DR

estimand as

τDR,K :=
K∑
k=1

λkτ
DR
k , (16)

where λk:=
(pk−pk−1)

∑K
l=k rl (pl−p)∑K

k=1(pk−pk−1)
∑K

l=k rl (pl−p)
. The weights λk follow from Theorem 2 of

Imbens and Angrist (1994).

Note that λk ≥ 0 and
∑K

k=1 λk = 1, because the IV values are ordered such

that pk ≥ pk−1. Therefore, τDR,K is a convex combination of τDRk , k = 1, ..., K,
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and hence has the DR property as well.12 In particular, when monotonicity

holds, τDRk reduces to the LATE Wald ratio τWald
k :=E[Y |Z=zk]−E[Y |Z=zk−1]

E[T |Z=zk]−E[T |Z=zk−1]
, and

hence τDR,K =
∑K

k=1 λkτ
Wald
k . Further by Theorem 2 of Imbens and Angrist

(1994),
∑K

k=1 λkτ
Wald
k = Cov(Y,p(Z))

Cov(T,p(Z))
. Notice that τWald

k in this case identifies a

weighted average of LATEs for Z ∈ {zk−1, zk} under monotonicity. Therefore,

if monotonicity holds, τDR,K identifies a doubly weighted average of LATEs,

averaging over different compliers for a given pair of IV values and over differ-

ent pairs of IV values; otherwise, when rank similarity holds, τDR,K identifies

a doubly weighted average of the average treatment effects at different treat-

ment quantiles - the first averaging is over different treatment quantiles for a

given pair of IV values and the second is over different pairs of IV values. Ei-

ther way, τDR,K identifies a doubly weighted average of the average treatment

effects for all the units responding to IV changes.

Now consider the general setup where the IV independence and treatment

rank similarity are valid only conditional on covariates. One can incorporate

covariates as before for each pair of IV values. In particular for k = 1, ..., K,

define the following estimand

πk(x, v):=
E [Y |Z = zk, X = x, V = v]− E [Y |Z = zk−1, X = x, V = v]

E [T |Z = zk, X = x, V = v]− E [T |Z = zk−1, X = x, V = v]

when the denominator is not zero; define πk(x, v):=0, otherwise. Following

Theorem 2, πk (x, v) identifies an average treatment effect at the conditional

(on X = x) v quantile of treatment.

Further analogous to Proposition 2, define the DR estimand for each pair

of IV values, zk−1 and zk, as

πDRk :=

∫∫
(0,1)×X

πk(x, v)wk(x, v)dvdx,

where wk(x, v) = |∆qk(x,v)|f(x)∫∫
(0,1)×X |∆qk(x,v)|f(x)dvdx

, and ∆qk (x, v) = qk (x, v)−qk−1 (x, v),

12In theory, any convex combination of τDRzk,zk−1
, k = 1, ...,K, would have the DR property.

Here our goal is to incorporate the 2SLS or LATE-type estimand given by Cov(Y,p(Z))
Cov(T,p(Z)) as a

special case, which leads to the particular choice of λk.
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and qk (x, v) = F−1
T |Z,X (v|zk, x) is the conditional v quantile of T given Z = zk

and X = x.

Then define the aggregated DR estimand as

πDR,K :=
K∑
k=1

λkπ
DR
k ,

where λk is defined as in (16). When monotonicity holds, πDR,K identifies

a doubly weighted average of LATEs; otherwise when rank similarity holds,

πDR,K identifies a doubly weighted average of the average treatment effects at

different conditional treatment quantiles. Note that the identified parameter

in this case is still the unconditional doubly weighted average, even though

the instrument validity holds only conditional on covariates.

One can estimate πDR,K by π̂DR,K =
∑K

k=1 λ̂kπ̂
DR
k given an i.i.d. sample

{(Yi, Ti, Xi, Zi)}ni=1, where π̂DRk is an estimator of πDRk and λ̂k is an estimator

of λk. π̂
DR
k can be obtained similar to π̂DR proposed for a binary IV. λ̂k can

be estimated by a simple sample analogue plug-in estimator. Let Dk = 1(Z =

zk). One can estimate pk = E [T |Z = zk] by p̂k =
∑n

i=1 TiD
k
i /
∑n

i=1 D
k
i for

k = 0, 1, ..., K, and estimate p by p̂ = n−1
∑n

i=1 Ti. One can further estimate

rk by r̂k = n−1
∑n

i=1D
k
i for k = 1, ..., K. Then the plug-in estimator for λk is

λ̂k =
(p̂k−p̂k−1)

∑K
l=k r̂l(p̂l−p̂)∑K

k=1(p̂k−p̂k−1)
∑K

l=k r̂l(p̂l−p̂)
, k = 1, ..., K

We provide the influence function for π̂DR,K , denoted as RKi, in eq. (S.13)

in the online supplementary appendix. The influence function given in Theo-

rem 4 is now indexed by k, i.e., Ri/B defined in (S.8) is now Rk
i /B

k. Together

with the influence function of λ̂k, we can derive the influence function of π̂DR,K .

Define the sieve variance of
√
nπ̂DR,K as σ2

Kn = E
[
RKi

2
]
. Let σ̂2

K be a consis-

tent estimator of σ2
Kn, such that |σKn/σ̂K − 1| = op(1). We have the following

asymptotics result for π̂DR,K .

Theorem 5. Let the conditions in Theorem 4 hold. Then
√
n
(
π̂DR,K−πDR,K

)
/σ̂K

= n−1/2
∑n

i=1 RKi/σKn + op(1)
d−→ N (0, 1).
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6 Empirical Analysis

In this section, we apply our doubly robust approach to estimate the effects of

night sleep on physical and psychological well-being using data from a recent

field experiment (Bessone et al. 2021). 452 adults in Chennai, India par-

ticipated in the experiment for a period of twenty eight days. Baseline data

were collected for the first eight days. Then participants were randomized into

three groups - a control group, a group who were provided with (a) devices

to improve their home-sleep environments, and (b) information and verbal en-

couragement to increase their night sleep (the Encouragement group) and a

group who were provided with (a), (b) and additional financial incentives to in-

crease night sleep (the Encouragement + Incentives group). The three groups

were further cross-randomized with a nap assignment that offered participants

the opportunity for a daily half-hour afternoon nap at their workplace. So all

together, there are six groups - control, encouragement, encouragement +

incentives, naps, encouragement and naps, encouragement + incentives and

naps. Details on the study design can be found in Bessone et al. (2021).

We use data from the first three non-nap assignment groups and take night

sleep as our treatment variable, i.e., T = night sleep in hours, for two reasons.

First, night sleep is a primary form of sleep for most people. Second, the

control group has zero hours of nap, while our treatment variable has to be

absolutely continuous. For simplicity, we use as our outcome the well-being

index, a summary measure of physical and phycological well-being, so Y =

well-being index.13,14 Some of the individual outcomes, like labor supply etc.

13Bessone et al. (2021) focus on the reduced-form impacts of the night sleep and nap
treatment assignments on a variety of work, well-being, cognition, and economic preferences
outcomes.

14The well-being index is constructed as a weighted average of a wide range of stan-
dardized measures of psychological and physical well-being. Each constituent measure is
standardized by the control group’s mean and standard deviation. The weights are the in-
verse of the covariance matrix to ensure that highly correlated measures receive less weights
in the aggregation. The measures of psychological well-being are happiness, sense of life pos-
sibilities (Cantril Scale), life satisfaction, stress, and depression. The measures of physical
well-being are performance in a stationary biking task, reported days of illness, self-reported
pain, activities of daily living, and blood pressure.
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were recorded on a daily basis during the experimental period. Analysis of

these outcomes would require dealing with the panel structure of the data.

The well-being index is standardized by the baseline control group’s mean

and standard deviation (std. dev.) as in Bessone et al. (2021), so the unit

of measurement is standard deviations. Following Bessone et al. (2021), our

analysis controls for baseline measures of well-being and night sleep. In a

subset of analysis we additionally control for participants’ gender and age in

four quartiles.

Table 1: Sample summary statistics

(1) (2) (3) (2)− (1) (3)− (1)
Baseline well-being 0.00 (0.46) 0.03 (0.40) 0.09 (0.41) 0.03 (0.07) 0.19 (0.07)
Baseline night sleep 5.51 (0.90) 5.60 (0.84) 5.65 (0.79) 0.09 (0.14) 0.14 (0.14)
Age in 1st quartile 0.23 (0.43) 0.25 (0.44) 0.31 (0.47) 0.02 (0.07) 0.08 (0.07)
Age in 2nd quartile 0.27 (0.45) 0.27 (0.45) 0.20 (0.40) -0.01 (0.07) -0.07 (0.07)
Age in 3rd quartile 0.23 (0.43) 0.27 (0.45) 0.34 (0.48) 0.03 (0.07) 0.10 (0.07)
Female 0.68 (0.47) 0.64 (0.48) 0.64 (0.48) -0.04 (0.08) -0.04 (0.08)
Night sleep 5.62 (0.80) 5.99 (0.85) 6.22 (0.95) 0.37 (0.14) 0.60 (0.14)
Well-being -0.00 (0.41) 0.14 (0.37) 0.10 (0.37) 0.15 (0.06) 0.10 (0.06)
Participants 77 75 74

Note: Columns 1 - 3 report sample means and standard deviations (in paren-
theses) of the three groups: (1) Control, (2) Encouragement, (3) Encouragement
+ Incentives ; Columns 4 and 5 report the mean differences and their standard
errors.

Our sample consists of 226 observations, including 77 from the control

group, 75 from the Encouragement group and 74 from the Encouragement +

Incentives group. Sample summary statistics are presented in Table 1. The

three experimental groups are well-balanced across all of the covariates. Con-

sistent with the results in Bessone et al. (2021), being assigned to either the

Encouragement group or the Encouragement + Incentives group significantly

increases night sleep on average. The increase in the Encouragement + Incen-

tives group is larger, as expected. Interestingly, these simple mean comparisons

show that being assigned to the Encouragement group significantly increases

well-being (by 0.15 std. dev.), while being assigned to the Encouragement +

Incentives group has no significant impacts on well-being, even though it leads

to a larger increase in the average sleep time (0.60 vs. 0.37 hours).
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Given the three experimental groups, we perform three sets of analysis. Let

Z1 be an indicator for whether one is assigned to the Encouragement group,

and Z2 be an indicator for whether one is assigned to the Encouragement +

Incentives group. Define the three IV values based on the values of (Z1, Z2),

i.e., z0:=(0, 0), z1:=(1, 0) and z2:=(0, 1). In the first set of analysis, we look at

the Encouragement group and the control group so that the IV is Z = Z1. In

the second set of analysis, we look at the Encouragement + Incentives group

and the control group, so the IV is Z = Z2. Note that these single IV analyses

condition on the other IV being zero, which is important (see, discussion in

Mogstad et al., 2021). In our third set of analysis, we use data from all three

groups, so that the IV is Z = (Z1, Z2) for Z ∈ {z0, z1, z2}. The first two sets

of analysis illustrate our proposed approach with a single binary IV, while the

the third analysis illustrates our extended result with a multi-valued IV.

For the first set of analysis, the monotonicity assumption requires (a) ev-

eryone is likely to increase their night sleep if they are assigned to the Encour-

agement group instead of the control group; for the second set of analysis, it

requires (b) everyone is likely to increase their night sleep if they are assigned

to the Encouragement + Incentives group instead of the control group. For

the third set of analysis, the monotonicity assumption requires (a) and addi-

tionally that everyone is likely to further increase their night sleep if they are

assigned to the Encouragement + Incentives group instead of the Encourage-

ment only group. Although we think these conditions are plausible, they are

not verifiable in principle.15 It is therefore useful to apply our doubly robust

approach. For comparison purposes, we also implement (i) the usual linear

2SLS estimator, (ii) an estimator of τWald X in eq. (14), where all the condi-

15The one-sided Kolmogorov-Smirnov (KS) test fails to reject first-order stochastic dom-
inance of the Encouragement group (or the Encouragement + Incentives group) treatment
over the Control group treatment at the 10% significance level. It also fails to reject the
dominance of the Encouragement + Incentives group treatment over the Encouragement
only group treatment at the 10% significance level. When inspecting the empirical treat-
ment quantile curves for each comparison, we do not find quantile crossing. However, as
mentioned, stochastic dominance, T1(u) − T0(u) ≥ 0 for all u ∈ (0, 1), is a necessary but
not sufficient condition for monotonicity Pr (T1 − T0 ≥ 0) = 1, and the KS test is known to
have low power for small samples, so we cannot conclude that monotonicity holds in this
case.

32



tional means are assumed to be linear in covariates and fully interacted with

the relevant binary IV, as well as (iii) a multi-valued IV extension of τWald X ,

i.e., τWald X,K :=
∑K

k=1 λkτ
Wald X
k for K = 2, where λk is defined as in (16) and

τWald X
k is defined analogously to τWald X for the pair of IV values, zk−1 and

zk for k = 1, 2.

Table 2: Effects of per hour night sleep on well-being

2SLS Wald DR DR-2
IV: Encouragement vs. Control (Z1 )

(I) 0.427 (0.195)** 0.427 (0.236)* 0.390 (0.225)* 0.382 (0.220)*
(II) 0.408 (0.187)** 0.407 (0.236)* 0.233 (0.128)* 0.234 (0.127)*

IV: Incentives vs. Control ( Z2)
(I) 0.130 (0.109) 0.131 (0.121) 0.123 (0.133) 0.122 (0.102)
(II) 0.111 (0.107) 0.111 (0.122) 0.077 (0.103) 0.078 (0.132)

Two IVs: (Z1, Z2)
(I) 0.151 (0.107) 0.174 (0.229) 0.165 (0.158) 0.157 (0.156)
(II) 0.144 (0.104) 0.149 (0.226) 0.099 (0.122) 0.097 (0.121)

Note: (I) controls for baseline measure of well-being and that of night
sleep, and (II) additionally controls for participants gender and age in
four quartiles. 2SLS - linear 2SLS estimate; Wald - estimates of τWald X

in eq. (14) or a multiple IV extension of it, where the conditional mean
functions of Y and T are assumed to be linear in covariates and fully
interacted with IV Z (see details in the main text); DR - doubly robust
IV estimates based on the estimator in Section 4; DR-2 - doubly robust
IV estimates, where the trimming parameter is set to be 3 times the
baseline value. Standard errors are in the parenthesis. ** Significant
5%; * Significant at 10%.

Table 2 reports estimates from the three sets of analysis in three panels.

Column 1 reports estimates by the usual linear 2SLS estimator. Column 2

reports estimates of τWald X (top and middle panels) and estimates of τWald X,2

(bottom panel). The linear 2SLS estimator is a special case of the estimator

of τWald X (or τWald X,2). Both estimators similarly require monotonicity for

causal interpretation but the former additionally assumes homogeneity of the

instrument and treatment effects in covariates. Column 3 reports estimates by

our doubly robust estimation proposed in Section 4.1 (top and middle panels)

and estimates by the multi-valued IV extension of the doubly robust estimation

discussed in Section 5 (bottom panel). Lastly, Column 4 reports similar doubly

robust estimates to those reported in Column 3. The difference is that in
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Column 3 the trimming parameter %n is set to be the baseline value specified

in Section 4.1, while in Column 4 %n is set to be three times of the baseline

value. In all the doubly robust estimation, the polynomial order of the power

series of T is chosen to be one, considering the relatively small sample sizes.

We report bootstrapped standard errors based on 200 bootstrap replications

for estimates in Columns 2-4, since bootstrapping is straightforward and is

computationally convenient.

Note that each instrument is associated with a different group of individ-

uals responding to it. We found interesting treatment effect heterogeneity

across the different groups responding to the two instruments. The local es-

timates using the encouragement assignment Z1 as an IV range from 0.38

to 0.43 std. dev. when controlling for baseline sleep and baseline well-being,

which are significant at the 5% or 10% level. So for the group that respond

to the encouragement instrument, increased night sleep has marginally signif-

icant impacts on well-being. These estimates reduce to 0.23-0.41 std. dev.,

which are still significant at the 5% or 10% level, when additionally control-

ling for participants’ gender and age. In contrast, the local estimates using

the encouragement + incentives assignment Z2 as an IV are smaller (yet still

positive) but are not statistically significant, meaning that for the groups that

respond to the encouragement + incentives instrument, increased night sleep

does not translate into better well-being.

Table 3: Effects of per hour night sleep on well-being:
breakdown of the combined two IV estimates

(I) (II) (I) (II)
πDR1 0.399 (0.187)** 0.233 (0.157) τWald X

1 0.440 (0.243)** 0.404 (0.248)
πDR2 -0.297 (0.189) -0.167 (0.120) τWald X

2 -0.354 (0.357) -0.355 (0.485)
Wt. avg. 0.165 (0.158) 0.099 (0.122) Wt. avg. 0.174 (0.229) 0.149 (0.226)

Note: (I) controls for baseline well-being and baseline night sleep; (II) addition-
ally controls for participants’ gender and age in four quartiles. πDR1 andτWald X

1

compares the Encouragement group with Control; πDR1 and τWald X
2 compares

the Encouragement + Incentives group with the Encouragement only group. Wt.
avg. is the weighted average of πDR1 and πDR1 (or τWald X

1 and τWald X
2 ), where

the weights λ1 = 0.664 (std. err. = 0.239) and λ2 = 0.336 (std. err.= 0.239). **
Significant 5%.
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The estimates using the two instruments Z1 and Z2 jointly lie between

the estimates using each of the two instruments separately, which are not

statistically significant. Recall that the doubly robust estimator estimates

πDR,2:=
∑2

k=1 λkπ
DR
k and the Wald estimator estimates τWald X,2:=

∑2
k=1 λkτ

Wald X
k ,

where πDR1 and τWald X
1 utilize the IV variation from z0 to z1 (comparing the

Encouragement group to the control) while πDR2 and τWald X
2 utilize the IV

variation from z1 to z2 (comparing the Encouragement + Incentives group

to the Encouragement group). Table 3 reports a detailed breakdown of the

joint IV estimates. Estimates of πDR1 and τWald X
1 are positive, while estimates

of πDR2 and τWald X
2 are always negative, even though they are not statisti-

cally significant. Consistent with the above analysis, these results once again

suggest that those who respond to the additional financial incentives do not

experience improved well-being.

Across all analysis, our doubly robust estimates are similar to the estimates

of τWald X or τWald X,2 and the 2SLS estimates. The doubly robust estimates

come with slightly inflated standard errors compared with the 2SLS estimates.

The inflated standard errors reflect partly the tradeoff between robustness and

efficiency. The similarity of the point estimates between our doubly robust

estimator and the 2SLS estimator is reassuring. In this case, the doubly robust

approach serves as a valuable tool to corroborate the usual 2SLS estimates, so

that the 2SLS estimates can be relied upon with greater confidence.

Compared with the analysis in Bessone et al. (2021), which focuses on

reduced-form analysis and uses different IVs jointly in one regression, we ana-

lyze each IV separately and when using the two IVs jointly, we give a detailed

breakdown of the overall estimates. Our analysis yields the new finding that

those individuals who slept longer due to the better sleep environment and

verbal encouragement experienced improved mental and physical well-being,

while those who slept more due to the financial incentives did not retain such

benefits. This result is largely in line with the reduced-form estimates in

Bessone et al. (2021, see, e.g., Table III).
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7 Conclusion

Many empirical applications feature a continuous endogenous variable (treat-

ment) and a binary or discrete IV. In this paper, we propose nonparametric

doubly robust identification of the causal effects of a continuous treatment

with a binary or discrete instrument.

We consider the two commonly imposed restrictions on the first-stage in-

strument effect heterogeneity: the LATE-type monotonicity vs. treatment rank

similarity. Both assumptions can be used to identify causal effects of treat-

ment in non-separable models, which accommodate arbitrary treatment effect

heterogeneity and individuals sell-selection of different treatment levels. These

assumptions are not nested. Both assumptions are not verifiable. We first show

that with a continuous treatment, both can yield weighted average effects for

the units that respond to the instrument change. In practice, it is not ideal

to choose estimands based on, say, some pre-testing results. We further de-

velop doubly robust estimands that are robust to failure of either one, so that

one does not have to rely on pre-testing. When the LATE-type monotonicity

holds, they reduce to the LATE-type estimands; otherwise, they continue to be

valid under treatment rank similarity. Further, when treatment rank similarity

holds, we can identify treatment effect heterogeneity at different (conditional)

treatment quantiles. Based on our nonparametric identification results, we

propose convenient semiparametric estimators and establish consistency and

asymptotic normality of the proposed estimators. While our primary focus

is on a binary instrument, we extend all of the identification, estimation and

asymptotic results to the case with a multi-valued IV or a vector of discrete

IVs, with or without covariates.

The usefulness of our proposed approach is illustrated in an empirical anal-

ysis estimating the impacts of night sleep on well-being, using data from a

recent field experiment. We show that the group of individuals who increased

night sleep due to information and verbal encouragement had improved psy-

chological and physical well-being, while those who slept more due to the

additional financial incentives did not experience such positive effects. In this
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case, our doubly robust estimation yields estimates that are similar to the

usual linear 2SLS estimates across different sets of analysis, which further

establishes the credibility of the IV/2SLS estimates.

It is worth mentioning that we seek robust identification of some uncon-

ditional weighted average effects. When monotonicity fails, such weighted

average effects average over units experiencing positive treatment changes and

those experiencing negative treatment changes, which may not be ideal. How-

ever, it is well-known that individual types are not identified; therefore, point

identification of (weighted) average effects separately for each individual type

is not possible without further assumptions. An interesting direct of future

research is then to develop partial identification results.
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Online supplementary appendix for
Nonparametric Doubly Robust Identification of Causal

Effects of a Continuous Treatment using Discrete
Instruments

Yingying Dong and Ying-Ying Lee†

In this supplementary appendix, Section S.1 provides proofs for the identi-

fication results presented in Sections 2 and 3. Section S.2 presents the inference

theory for π(x, v). Section S.3 presents the proofs of the inference results pre-

sented in Section 4.2. Section S.4 provides more details on computing the

standard errors.

S.1 Proofs: Identification

Proof of Lemma 1: By definition,

τWald =
E [g (T1, ε) |Z = 1]− E [g (T0, ε) |Z = 0]

E [T1|Z = 1]− E [T0|Z = 0]

=
E [g (T1, ε)− g (T0, ε)]

E [T1 − T0]

=
E [{g (T1, ε)− g (T0, ε)} · 1 (T1 − T0 > 0)]

E [{T1 − T0} · 1 (T1 − T0 > 0)]

=

∫∫
Tc

∫
{g (t1, e)− g (t0, e)}Fε|T0,T1 (de|t0, t1)FT0,T1 (dt0, dt1)∫∫

Tc {t1 − t0}FT0,T1 (dt0, dt1)

=

∫∫
Tc
wt0,t1

{∫
g (t1, e)− g (t0, e)

t1 − t0
Fε|T0,T1 (de|t0, t1)

}
FT0,T1 (dt0, dt1)

=

∫∫
Tc
wt0,t1E

[
Yt1 − Yt0
t1 − t0

|T0 = t0, T1 = t1

]
FT0,T1 (dt0, dt1)

=

∫∫
Tc
wt0,t1LATE(t0, t1)FT0,T1 (dt0, dt1) ,

where the first equality follows from the models for Y and T without covariates

as specified in eq.s (2) and (4), respectively, the second equality follows from

†Yingying Dong and Ying-Ying Lee, Department of Economics, University of California
Irvine, yyd@uci.edu and yingying.lee@uci.edu.
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Assumption 2, the third equality follows from Assumption 4, the fourth equal-

ity follows from the law of iterated expectations, and the fifth to the last equal-

ities follow from rearranging and our notation wt0,t1 = t1−t0∫∫
Tc (t1−t0)FT0,T1

(dt0,dt1)

and Tc = {(t0, t1) ∈ T0 × T1 : t1 − t0 > 0}. Under monotonicity, wt0,t1 ≥ 0

and
∫∫
Tc wt0,t1FT0,T1(dt0, dt1) = 1, so τWald identifies a weighted average of

LATE(t0, t1):=E
[
Yt1−Yt0
t1−t0 |T0 = t0, T1 = t1

]
for (t0, t1) ∈ Tc.

Further, when g (T, ε) is continuously differentiable in T ,

τWald =
E
[∫ T1

T0

∂g(t,ε)
∂t

dt
]

E
[∫ T1

T0
1dt
]

=
E
[∫
T
∂g(t,ε)
∂t

1 (T0 ≤ t ≤ T1) dt
]

E
[∫

1 (T0 ≤ t ≤ T1) dt
]

=

∫
T E

[
∂g(t,ε)
∂t
|T0 ≤ t ≤ T1

]
Pr (T0 ≤ t ≤ T1) dt∫

Pr (T0 ≤ t ≤ T1) dt

=

∫
T
E

[
∂g (t, ε)

∂t

∣∣∣∣∣T0 ≤ t ≤ T1

]
w̃dt,

where w̃ = Pr(T0≤t≤T1)∫
T Pr(T0≤t≤T1)dt

, the first equality follows from Assumption 4 and

differentiability of g (T, ε) in T , the second to the last equalities follow from the

law of iterated expectations and interchanging the order of integration when

standard regularity conditions hold.

Proof of Lemmas 2 and 3: By Z ⊥ (Uz, ε) specified in Assumption 2, Z ⊥
Uz|ε. That is, U0|ε ∼ U0| (ε, Z = 0) and U1|ε ∼ U1| (ε, Z = 1). Further by As-

sumption 5, U0|ε ∼ U1|ε. Together they imply U0| (ε, Z = 0) ∼ U1| (ε, Z = 1),

i.e., U | (ε, Z = 1) ∼ U | (ε, Z = 0), so that U ⊥ Z|ε. Further by Assumption 2,

Z ⊥ ε. Therefore, Z ⊥ (U, ε), and hence Z ⊥ ε|U . It further implies T ⊥ ε|U ,

since T = h (Z,U).

Replacing the above proof of Lemma 2 by conditioning on X in each step

proves Lemma 3.
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Proof of Theorem 2: Similar to the derivation of Lemma 2, one can show

Z ⊥ ε| (V,X) under Assumptions C2 and C5. In particular, Assumption

C2 states Z ⊥ (Vz, ε) |X, which implies Z ⊥ Vz| (X, ε), i.e., Vz| (X, ε, Z = z) ∼
Vz| (X, ε), and hence V | (X, ε, Z = z) ∼ Vz| (X, ε). In addition, Assumption C5

states V1| (X, ε) ∼ V0| (X, ε). Then, V | (X, ε, Z = 0) ∼ V | (X, ε, Z = 1), i.e.,

Z ⊥ V | (X, ε). Further by Assumption C2, Z ⊥ ε|X. Therefore, Z ⊥ (V, ε) |X,

and hence Z ⊥ ε| (V,X).

Consider now the two terms in the numerator of π(x, v):

E [Y |Z = z,X = x, V = v] = E [G (Tz(x, v), x, ε) |Z = z,X = x, V = v]

= E [G (Tz(x, v), x, ε) |X = x, V = v]

= E
[
YTz(x,v)|X = x, V = v

]
=

∫
G (Tz(x, v), x, e)Fε|X,V (de|x, v) ,

where the first equality follows from our models (9) and (10), the second

equality follows from the condition Z ⊥ ε| (V,X) shown above, and the third

equality follows from the definition of potential outcomes.

Consider next the two terms in the denominator of π(x, v). By eq. (10),

E [T |Z = z,X = x, V = v] = Tz (x, v) .

Together they prove the theorem.

Proof of Lemma 4: First notice

E [Y |Z = 1, X = x]− E [Y |Z = 0, X = x]

= E [G (T1, X, ε) |Z = 1, X = x]− E [G (T0, X, ε) |Z = 0, X = x]

= E [G (T1, X, ε) |X = x]− E [G (T0, X, ε) |X = x] ,

where the first equality follows from our models of Y and T , equations (9) and

(10), respectively, while the second equality follows from Assumption C2.
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Consider now the numerator of τLATE X :∫
X
{E [Y |Z = 1, X = x]− E [Y |Z = 0, X = x]} fX(x)dx

=

∫
X
{E [G (T1, X, ε) |X = x]− E [G (T0, X, ε) |X = x]} fX(x)dx

= E [(G (T1, X, ε)−G (T0, X, ε))]

= E [G (T1, X, ε)−G (T0, X, ε) · 1 (T1 − T0 < 0)]

=

∫∫
Tc

∫∫
{G (t1, x, e)−G (t0, x, e)}FX,ε|T0,T1 (dx, de|t0, t1)FT0,T1 (dt0, dt1) ,

where the first equality follows from the derivation above, the second equality

follows from the law of total expectation, and the third equality follows from

Assumption 4, and the last equality follows from iterated expectations.

Similarly, the numerator of τWald X can be derived as follows∫
X
{E [T1|Z = 1, X = x]− E [T0|Z = 0, X = x]} fX(x)dx

= E [(T1 − T0) · 1 (T1 − T0 < 0)]

=

∫∫
Tc
{t1 − t0}FT0,T1 (dt0, dt1) .

Therefore,

τWald X

=

∫∫
Tc

∫∫
{G(t1, x, e)−G(t0, x, e)}FX,ε|T0,T1 (dx, de|t0, t1)FT0,T1 (dt0, dt1)∫∫

Tc {t1 − t0}FT0,T1 (dt0, dt1)

=

∫∫
Tc
wt0,t1

{∫∫ G(t1, x, e)−G(t0, x, e)

t1 − t0
FX,ε|T0,T1(dx, de|t0, t1)

}
FT0,T1(dt0, dt1)

=

∫∫
Tc
wt0,t1E

[
Yt1 − Yt0
t1 − t0

|T1 = t1, T0 = t0

]
FT0,T1 (dt0, dt1)

=

∫∫
Tc
wt0,t1LATE(t0, t1)FT0,T1 (dt0, dt1) .
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Proof of Proposition 2: When Assumption 4 monotonicity holds,

πDR =

∫∫
π(x, v)∆q(x, v)fX(x)dvdx∫∫

∆q(x, v)fX(x)dvdx
.

Plug in the expression of π(x, v) and ∆q(x, v), and notice V = Vz when Z = z,

for z = 0, 1. The numerator of πDR is
∫
X{
∫ 1

0
{E [Y |Z = 1, X = x, V1 = v] −

E [Y |Z = 0, X = x, V0 = v]}dv}fX(x)dx. Consider the two terms involved in

the difference. For z = 0, 1, we have∫
X

{∫ 1

0

E [Y |Z = z,X = x, V1 = v] dv

}
fX(x)dx

=

∫
X

{∫ 1

0

E [G(Tz(x, v), x, ε)|X = x, V1 = v] dv

}
fX(x)dx

=

∫
X
E [G (Tz (x, V1) , x, ε) |X = x] fX(x)dx

=

∫
X
E [G (Tz (x, V1) , x, ε) |Z = 1, X = x] fX(x)dx

=

∫
X
E [Y |Z = z,X = x] fX(x)dx,

where the first equality follows from the models of Y given by (9) and As-

sumption C2, which implies Z ⊥ ε| (Vz, X), the second equality follows from

averaging over the conditional distribution of Vz given X, which is Unif (0, 1)

by construction, the third equality follows from Assumption C2, which states

Z ⊥ (Vz, ε) |X, the last equality follows from the models of Y given by (9).

Now consider the numerator of πDR. It is given by
∫
X{
∫ 1

0
{E[Y |Z = 1, X =

x, V1 = v]− E[Y |Z = 0, X = x, V0 = v]}dv}fX(x)dx. Consider the two terms
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involved in the difference. For z = 0, 1, we have∫
X

{∫ 1

0

{E [T |Z = z,X = x, Vz = v] dv

}
fX(x)dx

=

∫
X

{∫ 1

0

E [Tz(x, v)|X = x, Vz = v] dv

}
fX(x)dx

=

∫
X
E [Tz (x, Vz) |X = x] fX(x)dx

=

∫
X
E [Tz (x, Vz) |Z = z,X = x] fX(x)dx

=

∫
X
E [T |Z = z,X = x] fX(x)dx,

where the first equality follows from the models of T given by (10) and As-

sumption C2, which implies Z ⊥ ε| (Vz, X), the second equality follows from

averaging over the conditional distribution of Vz given X, which is Unif (0, 1)

by construction, the third equality follows from Assumption C2, which states

Z ⊥ (Vz, ε) |X and further implies Z ⊥ Vz|X, the last equality follows from

the model of T given by eq. (10).

Together we have

πDR =

∫
X {E [Y |Z = 1, X = x]− E [Y |Z = 0, X = x]} fX(x)dx∫
X {E [T |Z = 1, X = x]− E [T |Z = 0, X = x]} fX(x)dx

= τWald X .

Then by Lemma 4, πDR identifies a weighted average of LATE (t0, t1) for

(t0, t1) ∈ Tc under Assumption 4 monotonicity.

Otherwise, when Assumption 4 monotonicity does not hold, but Assump-

tion C5 conditional treatment rank similarity holds,

πDR:=

∫∫
π(x, v)w(x, v)dvdx,

where w(x, v) ≥ 0 and
∫∫

w(x, v)dvdx = 1. So πDR is a weighted average of

π(x, v), the conditional average treatment effect given X = x and V = v, by

Theorem 2.
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S.2 Inference for π(x, v)

A 100(1 − α)% confidence interval for π(x, v) is constructed as
[
π̂(x, v) −

z∗1−ασ̂(x, v)/
√
n, π̂(x, v) + z∗1−ασ̂(x, v)/

√
n
]
, where the critical value z∗1−α can

be Φ−1(1 − α/2) by the asymptotically normal approximation. The sieve

variance estimator for π̂(x, v) is σ̂2(x, v) = ∆ψ̂(x, v)′0̂∆ψ̂(x, v)/∆T̂ (x, v)2,

where ∆ψ̂(x, v) = ψJ(x, T̂1(x, v), 1)− ψJ(x, T̂0(x, v), 0).

Theorem 6. Let Assumptions A1-A3 hold. Then
√
n(π̂(x, v)−π(x, v))/σ̂(x, v)

d−→ N (0, 1) uniformly for (x, v) ∈ Π% = {(x, v) ∈ X × V : |∆T (x, v)| ≥ %}.

For the uniform confidence interval over (x, v) ∈ Π%, the critical value z∗1−α

is simulated from the bootstrap sieve t-statistic Z∗n(x, v) for (x, v) ∈ Π%: Let

$1, ..., $n be i.i.d. random variables independent of the data with mean zero,

unit variance, and finite third moment, e.g., N (0, 1). Let

Z∗n(x, v) =
∆ψ̂(x, v)′Ĝ−1

∆T̂ (x, v)σ̂(x, v)
√
n

n∑
i=1

ψJ(x, T, Zi)êi$i.

Calculate Z∗n(x, v) for a large number of independent draws of $1, ..., $n. Then

the critical value z∗1−α is the (1 − α) quantile of sup(x,v)∈Π%
|Z∗n(x, v)| over the

draws. Theorem 4.1 in Chen and Christensen (2018) implies the result on the

consistency of the sieve score bootstrap. sups∈R

∣∣∣P( sup(x,v)∈Π%
|
√
n
(
π̂(x, v) −

π(x, v)
)
/σ̂(x, v)| ≤ s

)
− P∗

(
sup(x,v)∈Π%

|Z∗n(x, v)| ≤ s
)∣∣∣ = op(1), where P∗

denotes a probability measure conditional on the data {Yi, Ti, Xi, Zi}ni=1.

S.3 Proofs: Estimation and Inference

The proofs use the results in Angrist, Chernozhukov, and Fernańdez-Val (2006)

(ACF, henceforth) and Chen and Christensen (2018) (CC, henceforth). To

simplify exposition, we collect notations used in the proofs below. We suppress

the subscripts i, z and dependence on v, when there is no confusion.
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Notation:

φi(v) = ϑ(v)−1
(
1(Ti ≤ S ′ia(v))− v

)
Si

S1i = (1, X ′i, 1, X
′
i)
′, S0i = (1, X ′i, 0,0

′
(dx×1))

′,∆Si = S1i − S0i

∂tmz(X, qz(X, v)) =
∂

∂t
mz(X, t)|t=qz(X,v)

qzi = qz(Xi, v), q̂zi = q̂z(Xi, v)

∆qi = ∆q(Xi, v) = q1i − q0i = (S1i − S0i)
′a(v) = ∆S ′ia(v)

∆q̂i = ∆q̂(Xi, v) = q̂1i − q̂0i = (S1i − S0i)
′â(v) = ∆S ′iâ(v)

∆ψi = ∆ψ(Xi, v) = ψJ(Xi, q1(Xi, v), 1)− ψJ(x, q0(Xi, v), 0)

∆ψ̂i = ∆ψ̂(Xi, v) = ψJ(Xi, q̂1(Xi, v), 1)− ψJ(Xi, q̂0(Xi, v), 0)

∆mi = ∆m(Xi, v) = m1(Xi, q1(Xi, v))−m0(Xi, q0(Xi, v))

∆m̂i = ∆m̂(Xi, v) = m̂1(Xi, q̂1(Xi, v))− m̂0(Xi, q̂0(Xi, v)) = ∆ψ̂
′
iĉ

∆m̌i = ∆m̌(Xi, v) = m̂1(Xi, q1(Xi, v))− m̂0(Xi, q0(Xi, v)) = ∆ψ′iĉ

χi = χ(Xi, v) = 1(|∆q(Xi, v)| ≥ %|)

χ±i = χ±(Xi, v) = 1(±∆q(Xi, v) ≥ %|)

Lemma 5 is for estimating the trimming function.

Lemma 5. Let Assumption A1 hold. Let
√
n(%n−%) = o(1) and

√
nl−1 = o(1).

Then

1.

1√
n

n∑
i=1

1

l

∑
v∈V (l)

∆m(Xi, v)
(
χ̂+(Xi, v)− χ+(Xi, v)

)
=

1√
n

n∑
i=1

∫ 1

0

∂

∂α
E [∆m(X, v)1(∆S ′α ≥ %)]

′ ∣∣
α=a(v)

φi(v)dv + op(1).
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2.

1√
n

n∑
i=1

1

l

∑
v∈V (l)

∆q(Xi, v)
(
χ̂+(Xi, v)− χ+(Xi, v)

)
=

1√
n

n∑
i=1

∫ 1

0

∂

∂α
E [∆q(X, v)1(∆S ′α ≥ %)]

′ ∣∣
α=a(v)

φi(v)dv + op(1).

Step 1 is Op(n
−1/2), so the estimation error of χ is of first order asymptoti-

cally by Lemma 5. The rate condition on
√
n(%n−%) = o(1) means that using

%n rather than % is first-order asymptotically ignorable.

Lemma 6 is for the approximation error from the numerical integration.

Lemma 6. Let a function f(x, v) be of bounded variation in v ∈ V, uniformly

in x ∈ X . Then

sup
x∈X

∣∣l−1
∑
v∈V (l)

f(x, v)1(∆q(x, v) > %)−
∫ 1

0

f(x, v)1(∆q(x, v) > %)dv
∣∣ = O(l−1).

The inference theory for π(v) follows analogously to that of πDR, but with-

out integrating over v. Therefore we first present the proof of Theorem 4 for

πDR.

Proof of Theorem 4: Define A+ and A− as A± =
∫ 1

0

∫
X ∆m(x, v)χ±(x, v)

fX(x)dxdv. SoA = A+−A− =
∫ 1

0

∫
X ∆m(x, v)/∆q(x, v)

(
∆q(x, v)1(∆q(x, v) ≥

%)−∆q(x, v)1(∆q(x, v) ≤ −%)
)
fX(x)dxdv =

∫ 1

0

∫
X π(x, v)|∆q(x, v)|1(|∆q(x, v)|

≥ %)fX(x)dxdv.

Define B+ and B− as B± =
∫ 1

0

∫
X ∆q(x, v)χ±(x, v)fX(x)dxdv. By a similar

argument as A, we can show that B = B+ − B−. Therefore, πDR = A/B

and πDR± = A±/B±. Linearize π̂DR − πDR = (Â − A)/B − (B̂ − B)π/B +

Op

(
|Â− A||B̂ −B|/B2 + |B̂ −B|2/B2

)
.

The proof is focused on Â+, the estimator of A+. The same arguments

apply to B̂+, the estimator of B+. The same arguments apply to π̂DR− and

hence π̂DR.
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Write π̂DR+ = Â+/B̂+, where

Â+ =
1

n

n∑
i=1

1

l

∑
v∈V (l)

∆m̂(Xi, v)χ̂+(Xi, v),

B̂+ =
1

n

n∑
i=1

1

l

∑
v∈V (l)

∆q̂(Xi, v)χ̂+(Xi, v).

In the following, we suppress the subscripts of + and superscripts of DR

for expositional simplicity. Linearize π̂ − π = (Â − A)/B − (B̂ − B)π/B +

Op

(
|Â− A||B̂ −B|/B2 + |B̂ −B|2/B2

)
.

Let Ã = n−1
∑n

i=1 l
−1
∑

v∈V (l) ∆m̂(Xi, v)χ(Xi, v) for a known trimming

function. Decompose Â− A = Â− Ã+ Ã− A. The estimation error in ∆m̂.

Ã− A =
1

n

n∑
i=1

1

l

∑
v∈V (l)

(∆m̂(Xi, v)−∆m(Xi, v))χ(Xi, v) (S.1)

+
1

n

n∑
i=1

1

l

∑
v∈V (l)

∆m(Xi, v)χ(Xi, v)− A. (S.2)

By Lemma 6 and assuming
√
nl−1 = o(1), (S.2) is n−1

∑n
i=1RA3i + op(n

−1/2),

where RA3i =
∫ 1

0
∆m(Xi, v)χ+(Xi, v)dv − A+.

We focus on (S.1) next. Decompose ∆m̂i−∆mi =
(
∆m̂i−∆m̌i

)
+
(
∆m̌i−

∆mi

)
. The first part is for Step 1 estimation error, and the second part is for

Step 2 estimation error.

Step 1 Theorem 3 in ACF shows that â(v) − a(v) = n−1
∑n

i=1 φi(v) +

op(n
−1/2) uniformly over v ∈ V and converges in distribution to a zero mean

Gaussian process indexed by v. Decompose

∆m̂i −∆m̌i

= m1(Xi, q̂1i)−m1(Xi, q1i)− (m0(Xi, q̂0i)−m0(Xi, q0i)) + so1

= ∂tm1(Xi, q1i)(q̂1i − q1i)− ∂tm0(Xi, q0i)(q̂0i − q0i) + so1 + so2

= ∂tm1(Xi, q1i)S1i(â(v)− a(v))− ∂tm0(Xi, q0i)S0i(â(v)− a(v)) + so1 + so2,
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where (We suppress the subscript i for simplicity.)

so1 = m̂1(q̂1)−m1(q̂1)−
(
m̂0(q̂0)−m0(q̂0)

)
−
(
m̂1(q1)−m1(q1)

)
+
(
m̂0(q0)−m0(q0)

)
= Op (‖∂tm̂z − ∂tmz‖∞‖q̂z − qz‖∞) ,

so2 = Op

(
∂2
tm1

(
q̂1 − q1

)2
+ ∂2

tm0

(
q̂0 − q0

)2
)

= Op(‖q̂z − qz‖2
∞),

as ∂2
tmz is uniformly bounded by Assumption A3. ACF and Corollary 3.1(ii)

in CC implies that so1+so2 = Op(‖q̂z−qz‖∞‖∂tm̂z−∂tmz‖∞+‖q̂z−qz‖2
∞) =

Op(n
−1/2(J−(p−1) + J

√
(J log J)/n) + n−1) = op(n

−1/2) uniformly over v ∈ V ,

by assuming J
√

(J log J)/n = o(1) and p > 1.

Then

√
n

1

n

n∑
i=1

1

l

∑
v∈V (l)

(∆m̂i −∆m̌i)χi

=
1

n

n∑
i=1

1

l

∑
v∈V (l)

(∂tm1(Xi, q1i)S
′
1iχi
√
n(â(v)− a(v))

− ∂tm0(Xi, q0i)S
′
0iχi
√
n(â(v)− a(v)) + op(1)

=
1

l

∑
v∈V (l)

E [(∂tm1(Xi, q1i)S1i − ∂tm0(Xi, q0i)S0i)χi]
′√n(â(v)− a(v)) + op(1)

=
1√
n

n∑
j=1

1

l

∑
v∈V (l)

E [(∂tm1(Xi, q1i)S1i − ∂tm0(Xi, q0i)S0i)χi]
′ φj(v) + op(1)

=
1√
n

n∑
j=1

∫ 1

0

E [(∂tm1(Xi, q1i)S1i − ∂tm0(Xi, q0i)S0i)χi]
′ φj(v)dv + op(1),

where the third equality is by ACF, and the last equality is by Lemma 6 and
√
nl−1 = o(1).

For the second equality, let F =
{

1(∆S ′ia > %), a ∈ B
}

that is a VC sub-

graph class and hence a bounded Donsker class. Then F(∂tm1(Xi, S
′
1ia)S1i −

∂tm0(Xi, S
′
0ia)S0i) is also bounded Donsker with a square-integrable envelop

2 supz,x,t |∂tmz(x, t)|maxj∈{1,2,...,dx} |Xj| by Theorem 2.10.6 in Van der Vaart
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and Wellner (1996). So n−1
∑n

i=1(∂tm1(Xi, q1i)S1i − ∂tm0(Xi, q0i)S0i)χi =

E[(∂tm1(Xi, q1i)S1i − ∂tm0(Xi, q0i)S0i)χi] + op(n
−1/2) uniformly in v ∈ V .

Step 2 We show the stochastic equicontinuity, n−1
∑n

i=1(∆m̌i − ∆mi)χi =

E [(∆m̌i −∆mi)χi] + so3, where so3 = op(n
−1/2) uniformly in v ∈ V .

Let ∆m̃i = ∆ψ′ic̃ and ∆m̌i = ∆ψ′iĉ. Then decompose so3 = so31 + so32

to the “standard deviation” term so31 and the “bias” term so32,

so3 =
1

n

n∑
i=1

χi (∆m̌i −∆m̃i)−
∫
X
χi (∆m̌i −∆m̃i)FX(dXi) (so31)

+
1

n

n∑
i=1

χi (∆m̃i −∆mi)−
∫
X
χi (∆m̃i −∆mi)FX(dXi). (so32)

Let
√
nso31 = Q′J(ĉ−c̃), whereQJ =

√
n( 1

n

∑n
i=1 χi∆ψi−

∫
X χi∆ψiFX(dXi)).

By var(QJ) = E[χi∆ψi∆ψ
′
i] and the Jensen’s inequality, E[‖QJ‖] ≤

O(
√
E[‖∆ψi‖2]) = O(ζ). As given in the proof of Lemma 3.1 in CC, ‖ĉ −

c̃‖`∞ = Op(
√

log J/(nλmin(G))), where the minimum eigenvalue λmin(G) >

0.16 Then E[|so31|] = O(n−1/2ζ
√

log J/(nλmin(G))) by the Cauchy-Schwartz

inequality. The Markov’s inequality implies so31 = Op(n
−1ζ
√

log J/λmin(G)) =

op(n
−1/2) implied by Assumption A2.5.

var(
√
nso32) = O(E

[
χi (∆m̃i −∆mi)

2]) = O(‖m−ΠJm‖2
∞), where ΠJm =

arg minh∈ΨJ
‖m − h‖L2(X,T,Z), by Theorem 3.1 (i) in CC. The Markov’s in-

equality yields so32 = Op(n
−1/2‖m−ΠJm‖∞) = Op(n

−1/2J−p) = op(1) by the

results in the proof of Corollary 3.1 in CC.

By Lemma 6 and assuming
√
nl−1 = o(1), l−1

∑
v∈V (l) E [(∆m̌i −∆mi)χi] =∫ 1

0
E [∆m̌iχi] dv − A+ op(n

−1/2).

Note thatA is based on a linear functional ofm, L(m) =
∫ 1

0

∫
X mz(x, qz(x, v))

1(∆q(x, v) > %)FX(dx)dv. So we use the results on linear functionals of a sieve

estimator in CC. Let σ2
A2n = E [R2

A2i], where RA2i = D+′G−1ψJ(Xi, Ti, Zi)ei

and D+ =
∫ 1

0
E
[
∆ψJ(X, v)χ+(X, v)

]
dv, with a consistent estimator σ̂2

A2.

16By Lemma A.1 in CC, s−1JK � πJ = 1 for the exogenous case.
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Lemma 4.1 in CC provides∣∣∣∣∣
√
n

σ̂A2

(∫ 1

0

E [∆m̌iχi] dv − A
)
− 1

σA2n

√
n

n∑
i=1

RA2i

∣∣∣∣∣ = op(1).

The estimation error from the trimming function Â− Ã = n−1
∑n

i=1 l
−1∑

v∈V (l) ∆m(Xi, v)
(
χ̂(Xi, v)− χ(Xi, v)

)
+ op(1) by n−1

∑n
i=1 l

−1
∑

v∈V (l)(
∆m̂(Xi, v) − ∆m(Xi, v)

)(
χ̂(Xi, v) − χ(Xi, v)

)
= Op

(
‖∆m̂ − ∆m‖∞‖q̂z −

qz‖∞
)

= op(n
−1/2). Together with Lemma 5(i),

∣∣√n(Â−A)−n−1/2
∑n

i=1 RAi

∣∣ =

op(1), where RAi = RA1i +RA2i +RA3i with

RA1i =

∫ 1

0

(
E
[
(∂tm1(X, q1)S1 − ∂tm0(X, q0)S0)χ+(X, v)

]
+

∂

∂α
E [∆m(X, v)1(∆S ′α ≥ %)]

∣∣
α=a(v)

)′
φi(v)dv,

By the similar arguments as for A in (S.1) and (S.2),

B̃ −B =
1

n

n∑
i=1

1

l

∑
v∈V (l)

(∆q̂(Xi, v)−∆q(Xi, v))χ(Xi, v) (S.3)

+
1

n

n∑
i=1

1

l

∑
v∈V (l)

∆q(Xi, v)χ(Xi, v)−B. (S.4)

By Lemma 6, (S.4) is n−1
∑n

i=1

∫ 1

0
∆q(Xi, v)χ(Xi, v)dv −B + op(n

−1/2). (S.3)

is

1

n

n∑
i=1

1

l

∑
v∈V (l)

∆S ′i (â(v)− a(v))χi

=
1

n

n∑
j=1

1

l

∑
v∈V (l)

1

n

n∑
i=1

χi∆S
′
iφj(v) + op(n

−1/2)

=
1

n

n∑
j=1

1

l

∑
v∈V (l)

E [χi∆Si]
′ φj(v) + op(n

−1/2)
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=
1

n

n∑
j=1

∫ 1

0

E [∆S ′iχi]φj(v)dv + op(n
−1/2),

where the first equality by ACF, and the third equality by Lemma 6. For the

second equality, let F =
{

1(∆S ′ia > %), a ∈ B
}

that is a VC subgraph class

and hence a bounded Donsker class. Then F∆S is Donsker with a square-

integrable envelop maxj∈{1,2,...,dx} |Xj| by Theorem 2.10.6 in Van der Vaart and

Wellner (1996). So n−1
∑n

i=1 χi∆Si − E [χi∆Si] = op(1) uniformly over v ∈ V
Together with Lemma 5(ii), we obtain

∣∣√n(B̂ − B) − n−1/2
∑n

i=1RBi

∣∣ =

op(1), where RBi = RB1i +RB3i with

RB1i =

∫ 1

0

(
E
[
∆S ′+(X, v)

]
+

∂

∂α
E [∆q(X, v)1(∆S ′α ≥ %)]

′ ∣∣
α=a(v)

)
φi(v)dv

RB3i =

∫ 1

0

∆q(Xi, v)χ+(Xi, v)dv −B.

By a linearization for π̂DR+ , π̂DR+ − πDR+ = Â+

B̂+
− A+

B+
= Â+−A+

B+
− πDR

+

B+
(B̂+ −

B+) + op(n
−1/2). Therefore, we define R+

i = RAi− πDR+ RBi = R+
1i +R+

2i +R+
3i,

where R+
1i = RA1i − πDR+ RB1i, R

+
2i = RA2i, and R+

3i = RA3i − πDR+ RB3i. That

is,

R+
1i =

∫ 1

0

(
E
[(
∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0 − πDR+ ∆S

)
χ+(X, v)

]
+

∂

∂α
E
[(

∆m(X, v)− πDR+ ∆q(X, v)
)

1(∆S ′α ≥ %)
] ∣∣
α=a(v)

)′
φi(v)dv,

R+
2i = D+′G−1ψJ(Xi, Ti, Zi)ei,with D+ =

∫ 1

0

E
[
∆ψJ(X, v)χ+(X, v)

]
dv,

R+
3i =

∫ 1

0

(
∆m(Xi, v)− πDR+ ∆q(Xi, v)

)
χ+(Xi, v)dv.

Then we obtain π̂DR+ − πDR+ = n−1
∑n

i=1

(
RAi − πDR+ RBi

)
/B+ + op(n

−1/2) =

n−1
∑n

i=1 R
+
i /B+ + op(n

−1/2).
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Asymptotic normality We suppress the subscripts of + and superscripts

of DR for expositional simplicity. Because R2i depends on (Yi, Ti, Xi), R1i

depends on (Ti, Xi), and R3i depends on Xi, the law of iterated expectations

yields σ2
n =

(
E
[
R2

1i

]
+ E

[
R2

2i

]
+ E

[
R2

3i

])
/B2 = (σ2

1 + σ2
2n + σ2

3)/B2.

We will show the Bahadur representation that∣∣∣∣∣
√
n(π̂ − π)

σ̂
− 1√

n

n∑
i=1

Ri

Bσn

∣∣∣∣∣
≤

∣∣∣∣∣
√
n(π̂ − π)

σn
− 1√

n

n∑
i=1

Ri

Bσn

∣∣∣∣∣+

∣∣∣∣√n(π̂ − π)

σn

(σn
σ̂
− 1
)∣∣∣∣ = op(1) (S.5)

by (i) n−1/2
∑n

i=1 Ri/(Bσn)
d→ N (0, 1), and (ii) |σn/σ̂ − 1| = op(1), as shown

below.

(i) Asymptotic normality will follow from the Lyapunov central limit theo-

rem with the third absolute moment, n−1/2E[|Ri|3]/(Bσn)3 → 0, since {Ri}ni=1

are independent across i, with mean zero and variance 1. By the assumed con-

ditions, it is straightforward to show that n−1/2E[|R1i|3]/(Bσ1)3 → 0. We show

below that n−1/2E[|R2i|3]/(Bσ2n)3 → 0. Then it implies that all the cross-

product terms n−1/2E[|R1iR2iR3i|]/(Bσn)3 → 0 and n−1/2E[|R2
jiRki|]/(Bσn)3 →

0 for j, k = 1, 2, 3, j 6= k.

Denote as ψi = ψJ(Xi, Ti, Zi). By Assumption A2.2(ii),

σ2
2n = E

[
R2

2i

]
/B2 = E

[
(D′G−1ψi)

2e2
i

]
/B2

≥ E
[
(D′G−1ψi)

2
]
σ2/B2 = D′G−1Dσ2/B2. (S.6)

By the Schwarz inequality, (S.6), and Assumption A2.3(ii),

(D′G−1ψi)
2

σ2
2n

≤ (D′G−1D′)(ψ′iG−1ψi)

σ2
2n

≤ ζ2

σ2
. (S.7)
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Then by (S.6), (S.7), and Assumption A2.2(iii),

1√
n
E
[
|R2i|3

B3σ3
2n

]
=

1√
n
E
[
|D′G−1ψiei|3

B3σ3
2n

]
=

1√
n
E
[

(D′G−1ψi)
2

B3σ2
2n

|D′G−1ψi|
σ2n

E
[
|ei|3|Xi, Ti, Zi

]]
≤ ζ√

nB3σ3
sup
x,t,z

E
[
|ei|3|Xi = x, Ti = t, Zi = z

]
= O

(
ζ√
n

)
= o(1).

(ii) It is straightforward that σ̂2
1 = n−1

∑n
i=1 R̂

2
1i/B̂

2 p−→ σ2
1 = E [R2

1i] /B
2

and σ̂2
3

p−→ σ2
3. The same arguments in Lemma G.4 in CC give |σ2n/σ̂2− 1| =

Op(δV,n) = op(1). So |σn/σ̂ − 1| = op(1).

By (i) that n−1/2
∑n

i=1Ri/(Bσn) = Op(1) and (ii), the second term
∣∣∣√n(π̂−π)

σ̂

(
σ̂
σn
−

1
)∣∣∣ = Op(1)op(1) = op(1). We then obtain the Bahadur representation. The

asymptotic normality follows from the result (i).

Therefore, we obtain that whenB+ > 0,
√
n
(
π̂DR+ −πDR+

)
/σ̂n+ = n−1/2

∑n
i=1 R

+
i

/(B+σn+) + op(1)
d−→ N (0, 1), where σ̂2

+ is a consistent estimator of σ2
n+ =

E
[
R+2
i

]
/B2

+.

For πDR− , define

R−1i =

∫ 1

0

(
E
[(
∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0 − πDR− ∆S

)
χ−(X, v)

]
+

∂

∂α
E
[(

∆m(X, v)− πDR+ ∆q(X, v)
)

1(∆S ′α ≤ −%)
] ∣∣
α=a(v)

)′
φi(v)dv.

Define R−i as R+
i by replacing + with − in all the components in R+

i . By the

same arguments for πDR+ , we obtain that when B− > 0,
√
n
(
π̂DR− −πDR−

)
/σ̂− =

n−1/2
∑n

i=1R
−
i /(B−σn−) + op(1)

d−→ N (0, 1), where σ̂2
− is a consistent estima-

tor of σ2
n− = E

[
R−2
i

]
/B2
−, such that |σn−/σ̂− − 1| = op(1).

For πDR, the same linearization yields π̂DR − πDR = (Â − A)/B − (B̂ −
B)πDR/B + Op

(
|Â − A||B̂ − B|/B2 + |B̂ − B|2/B2

)
. Let Ri = R+

i − R−i =

R1i +R2i +R3i, where Rli = R+
li −R

−
li for l = 1, 2, 3 by replacing πDR+ and πDR−
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with πDR. Specifically, let sgn(x, v) = 1(∆q(x, v) ≥ %)− 1(∆q(x, v) ≤ −%),

R1i =

∫ 1

0

(
E
[
(∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0 − πDR∆S)sgn(X, v)

]
+

∂

∂α
E[
(
∆m(X, v)− πDR∆q(X, v)

)
(1(∆S ′α ≥ %)

− 1(∆S ′α ≤ −%))]
∣∣
α=a(v)

)′
φi(v)dv,

with φi(v) = ϑ(v)−1
(
1(Ti ≤ S ′ia(v))− v

)
Si,

S1i = (1, X ′i, 1, X
′
i)
′, S0i = (1, X ′i, 0,0

′
(dx×1))

′,∆Si = S1i − S0i,

R2i = D′G−1ψJ(Xi, Ti, Zi)ei,

with D =

∫ 1

0

E
[
(ψJ(X, q1(X, v), 1)− ψJ(X, q0(X, v), 0))sgn(X, v)

]
dv.

R3i =

∫ 1

0

(
∆m(Xi, v)− πDR∆q(Xi, v)

)
sgn(Xi, v)dv,

B =

∫ 1

0

∫
X
|∆q(x, v)|1(|∆q(x, v)| ≥ %)f(x)dxdv. (S.8)

Proof of Theorem 3: The proof follows exactly the same arguments in the

proof of Theorem 4 and Lemma 5 by removing all “
∫ 1

0
· · · dv” and “l−1

∑
v∈V (l)”.

We can derive the influence function of π̂(v) to be Ri(v)/B(v) defined as the

influence function of π̂DR given in (S.8) by removing all
∫ 1

0
· · · dv. Specifically,

as πDR, define π+(v) over units experiencing positive changes for v ∈ V+% =

{v ∈ V : P (∆q(X, v) ≥ %) > 0}. Define B+(v) =
∫
X ∆q(x, v)χ+(x, v)f(x)dx,

so B+ =
∫ 1

0
B+(v)dv. The influence function of π̂+(v) is R+

i (v)/B+(v) =

(R+
1i(v) +R+

2i(v) +R+
3i(v))/B+(v), where

R+
1i(v) =

(
∂

∂α
E [(∆m(X, v)− π+(v)∆q(X, v)) 1(∆S ′α ≥ %)]

∣∣
α=a(v)

+ E
[
(∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0

− π+(v)∆S)χ+(X, v)
])′

φi(v),

R+
2i(v) = D+′(v)G−1ψJ(Xi, Ti, Zi)ei,with D+(v) = E

[
∆ψJ(X, v)χ+(X, v)

]
,

R+
3i(v) = (∆m(Xi, v)− π+(v)∆q(Xi, v))χ+(Xi, v). (S.9)
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Similarly consider π−(v) over units experiencing negative changes for v ∈
V−% = {v ∈ V : P (−∆q(X, v) ≥ %) > 0}. Let B(v) = B+(v) − B−(v), where

B−(v) =
∫
X ∆q(x, v)χ−(x, v)f(x)dx. Let Ri(v) = R+

i (v) − R−i (v), and the

influence function of π̂(v) is Ri(v)/B(v).

Define σ2(v) = E [Ri(v)2] /B(v)2. The unknown elements are estimated

following the same procedure as π̂DR by removing “l−1
∑

v∈V (l) .” For example,

D̂+(v) = n−1
∑n

i=1 ∆ψ̂iχ̂
+(Xi, v).

Proof of Theorem 6: We first show that the estimation error of q̂z(x, v) in

Step 1 is of smaller order than the estimation error in Step 2, i.e., the first-order

asymptotic distribution of π̂(x, v) is as if qz(x, v) was known. Under Assump-

tion A1, Theorem 3 in ACF implies that sup(x,v)∈X×V |q̂z(x, v) − qz(x, v)| =

Op(n
−1/2). The Step 2 series least squares estimator converges at a nonpara-

metric rate shower than
√
n. Therefore the first-order asymptotic distribution

of π̂(x, v) is dominated by Step 2 ∆m̌(x, v).

Step 1 When Tzi is observed, i.e., there is no Step 1 estimation error, define

π̌(x, v) = ∆m̌(x, v)/∆q(x, v). Decompose π̂(x, v) − π̌(x, v) = ∆m̂
∆q̂
− ∆m̌

∆q
=(

∆m̂
∆q̂
− ∆m̌

∆q̂

)
+
(

∆m̌
∆q̂
− ∆m̌

∆q

)
. The second part is for Step 1 in the denominator:

∆m̌
∆q̂
− ∆m̌

∆q
= ∆m

∆q2
(∆q −∆q̂) + so1. The first part is for Step 1 in the argument

in the numerator,

∆m̂

∆q̂
− ∆m̌

∆q̂

=
1

∆q
(∆m̂−∆m̌) + so2

=
1

∆q
(m1(x, q̂1)−m1(x, q1)− (m0(x, q̂0)−m0(x, q0))) + so2 + so3

=
1

∆q
(∂tm1(x, q1)(q̂1 − q1)− ∂tm0(x, q0)(q̂0 − q0)) + so2 + so3 + so4,
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where

so1 =
∆m̌

∆q̂∆q
(∆q −∆q̂)− ∆m

∆q2
(∆q −∆q̂) = (∆q −∆q̂)

1

∆q

(
∆m̌

∆q̂
− ∆m

∆q

)
,

so2 = ∆m̂

(
1

∆q̂
− 1

∆q

)
+ ∆m̌

(
1

∆q
− 1

∆q̂

)
= (∆m̂−∆m̌)

(
1

∆q̂
− 1

∆q

)
,

so3 =
1

∆q

{
m̂1(x, q̂1)−m1(x, q̂1)−

(
m̂0(x, q̂0)−m0(x, q̂0)

)
−
(
m̂1(x, q1)

−m1(x, q1)
)

+
(
m̂0(x, q0)−m0(x, q0)

)}
= Op ((∂tm̂1(x, q1)− ∂tm1(x, q1))(q̂1 − q1)) ,

so4 = Op

(
∂2
tm1

(
q̂1 − q1

)2
+ ∂2

tm0

(
q̂0 − q0

)2
)

= Op(‖q̂z − qz‖2
∞).

Thus so1 + so2 + so3 + so4 = Op(‖T̂ − T‖2
∞ + ‖T̂ − T‖∞‖∂tm̌ − ∂tm‖∞) =

Op(n
−1+n−1/2(J−(p−1)+J

√
(J4 log J)/n)) = op(n

−1/2) uniformly over (x, v) ∈
Π%, by Corollary 3.1(ii) in CC and assuming J

√
(J log J)/n = o(1) and p > 1.

Therefore,

√
n
(
π̂(x, v)− π̌(x, v)

)
=
√
n

{
∆m

∆q2
(∆q −∆q̂) +

1

∆q
(∂tm1(x, q1)(q̂1 − q1)− ∂tm0(x, q0)(q̂0 − q0))

}
+ op(1)

=

{
−π(x, v)

∆q
(S1 − S0) +

1

∆q
(∂tm1(x, q1)S1 − ∂tm0(x, q0)S0)

}′√
n(â(v)− a(v))

+ op(1)

=

{
−π(x, v)

∆q
∆S +

1

∆q
(∂tm1(x, q1)S1 − ∂tm0(x, q0)S0)

}′
1√
n

n∑
j=1

φj(v) + op(1)

(S.10)

by Theorem 3 in ACF and ‖π̂ − π̌‖∞ = Op(n
−1/2).
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Step 2 Define Zn ∼ N (0,0), σ2
n(x, v) = ∆ψ(x, v)′0∆ψ(x, v)/∆q(x, v)2, and

Zπn(x, v) =
∆ψ(x, v)′

∆q(x, v)σn(x, v)
Zn.

Lemma 4.1 in CC provides uniform Bahadur representation and uniform Gaus-

sian process strong approximation

sup
(x,v)∈Π%

∣∣∣∣√n (π̂(x, v)− π(x, v))

σ̂(x, v)
− Zπn(x, v)

∣∣∣∣ = op(1).

Proof of Lemma 5: Since ∆S ′i = (0,0′(dx×1), 1, X
′
i)
′, let ∆S ′ia− % = ∆S ′iβ,

where β = (a0(v), a′1(v), a2(v) − %, a′3(v))′. Let β̂ = (â0(v), â′1(v), â2(v) −
%n, â

′
3(v))′.

We show that (v, β) 7→ Gn[∆miχi] =
√
n
∑n

i=1

(
∆miχi − E [∆miχi]

)
is

stochastic equicontinuous over V ×B, with respect to the L2(P ) pseudometric

ρ((v1, β1), (v2, β2))2 = E
[(

∆m(Xi, v1)(1(∆S ′iβ1 ≥ 0) −∆m(Xi, v2)1(∆S ′iβ2 ≥
0)
)2]

.

Following the proof of Theorem 3 in Section A.1.2 in the appendix of

ACF, let F =
{

1(∆S ′iβ > 0), β ∈ B
}

that is a VC subgraph class and hence

a bounded Donsker class. F∆m(X, v) is Donsker with a square-integrable

envelop |∆m(X, v)| by Theorem 2.10.6 in Van der Vaart and Wellner (1996).

By stochastic equicontinuity of (v, β) 7→ Gn[∆miχi], n
−1/2

∑n
i=1 ∆mi

(
χ̂i−

χi
)

=
√
nE
[
∆mi

(
χ̂i − χi

)]
+ op∗(1) = ∂

∂α
E
[
∆m(Xi, v)1(∆S ′iα ≥ 0)

]′∣∣
α=β(v)

×
√
n(β̂(v) − β(v)) + op∗(1) uniformly over v ∈ V , which follows from ‖β̂(v) −

β(v)‖ = op∗(1), and resulting convergence with respect to the pseudometric

supv∈V ρ((v, β̂(v)), (v, β(v)))2 = op(1). The latter is from ρ((v, β), (v,B))2 =

E
[
∆m(Xi, v)2(1(∆S ′iβ ≥ 0)−1(∆S ′2i

]
= O

(
∂
∂α
E
[
∆m(Xi, v)21(∆S ′iα ≥ 0)

]∣∣′
α=β

(B − β)
)

for β,B ∈ B, which we show below.

We can rewrite 1(∆S ′iβ ≥ 0) − 1(∆S ′iB ≥ 0) = 1(∆S ′iβ ≥ 0,∆S ′iB <

0) − 1(∆S ′iβ < 0,∆S ′iB ≥ 0), and hence
(
1(∆S ′iβ ≥ 0) − 1(∆S ′iB ≥ 0)

)2
=

1(∆S ′iβ ≥ 0,∆S ′iB < 0) + 1(∆S ′iβ < 0,∆S ′iB ≥ 0). By symmetry, we focus

on the second term. We can write 1(∆S ′iβ < 0,∆S ′iB ≥ 0) = (1(∆S ′iB ≥
0) − 1(∆S ′iβ ≥ 0))1(∆S ′i(B − β) ≥ 0). Then E

[
∆m(Xi, v)2(1(∆S ′iB ≥ 0) −
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1(∆S ′iβ ≥ 0))1(∆S ′i(B − β) ≥ 0)
]
≤ E

[
∆m(Xi, v)2(1(∆S ′iB ≥ 0)− 1(∆S ′iβ ≥

0))
]

= ∂
∂α
E
[
∆m(Xi, v)21(∆S ′iα ≥ 0)

]∣∣′
α=β̄

(B − β), where β̄ is between β and

B by the mean value theorem.

n−1/2
∑n

i=1 l
−1
∑

v∈V (l) ∆mi

(
χ̂i−χi

)
= l−1

∑
v∈V (l)

∂
∂α
E
[
∆m(Xi, v)1(∆S ′iα ≥

0)
]′∣∣

α=β(v)

√
n(β̂(v)−β(v)) + op∗(1) = n−1/2

∑n
j=1

∫ 1

0
∂
∂α
E
[
∆m(Xi, v)1(∆S ′iα ≥

%)
]′∣∣

α=a(v)
φj(v)dv+

∫ 1

0
∂

∂a2(v)
E
[
∆m(Xi, v)1(∆S ′ia(v) ≥ %)

]
dv
√
n(%n−%)+op∗(1)

by Lemma 6.

The same arguments yield the result in 2. by replacing ∆m with ∆q.

Proof of Lemma 6: Let V(x) = {v ∈ V : ∆q(x, v) > %}. The approxima-

tion error of Riemann sum is supx∈X
∣∣l−1

∑
v∈V (l)∩V(x) f(x, v)−

∫
V(x)

f(x, v)dv
∣∣ =

O
(

supx∈X l
−1
∑

vj∈V (l)

(
supv∈(vj−1,vj) f(x, v)− infv∈(vj−1,vj) f(x, v)

))
= O

(
supx∈X l

−1 supP∈P
∑nP

j=0

∣∣f(x, vj) − f(x, vj−1)
∣∣) = O(l−1), where the set

of all partitions P = {P = {v0, . . . , vnP
} ⊂ V}.

Proof of Theorem 5: Decompose π̂DR,K − πDR,K =
∑K

k=1 λ̂kπ̂k − λkπk =∑K
k=1(λ̂k − λk)πk + λk(π̂k − πk) +Op((λ̂k − λk)(π̂k − πk)).
Let nk =

∑n
i=1 D

k
i . By the proof of Theorem 4,

∑K
k=1 λk(π̂k − πk) =∑K

k=1 λk(nk + nk−1)−1
∑n

i=1(Dk
i +Dk−1

i )Rk
i /B

k + op(n
−1/2) = n−1

∑n
i=1

∑K
k=1

λk
(Dk

i +Dk−1
i )Rk

i

(pk+pk−1)Bk + op(n
−1/2), where Rk

i = Rk
1i +Rk

2i +R3i,

Rk
1i =

∫ 1

0

(
E[(∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0 − πDR∆S)

sgn(X, v)(Dk +Dk−1)] +
∂

∂α
E
[(

∆m(X, v)− πDR∆q(X, v)
)(

1(∆S ′α ≥ %)

− 1(∆S ′α ≤ −%)
)
(Dk +Dk−1)

]∣∣
α=a(v)

)′
φki (v)dv/(pk + pk−1),

with φki (v) = ϑk(v)−1
(
1(Ti ≤ S ′iak(v))− v

)
Si,

ϑk(v) = E
[
fT |X,Z(S ′ak(v)|X,Z)SS ′(Dk +Dk−1)

]
/(pk + pk−1),

S1i = (1, X ′i, 1, X
′
i)
′, S0i = (1, X ′i, 0,0

′
(dx×1))

′,∆Si = S1i − S0i,
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Rk
2i = D′kG−1

k ψJ(Xi, Ti, Zi)ei,

with Gk = E
[
e2ψJ(X,T, Z)ψJ(X,T, Z)′(Dk +Dk−1)

]
/(pk + pk−1),

Dk =

∫ 1

0

E
[
(ψJ(X, q1(X, v), 1)− ψJ(X, q0(X, v), 0))sgn(X, v)

× (Dk +Dk−1)
]
dv/(pk + pk−1),

R3i =

∫ 1

0

(
∆m(Xi, v)− πDR∆q(Xi, v)

)
sgn(Xi, v)dv,

Bk =

∫ 1

0

E
[
|∆q(X, v)|1(|∆q(X, v)| ≥ %)(Dk +Dk−1)

]
dv/(pk + pk−1).

(S.11)

Next we analyze
∑K

k=1(λ̂k − λk)πk. Let Ak = QkPk, where Qk = qk − qk−1

and Pk =
∑K

l=k pl(ql − E [T ]). Let λk = Ak/B, where B =
∑K

k=1 Ak. So

πDR,K =
∑K

k=1 πkAk/B. Then
∑K

k=1(λ̂k − λk)πk =
∑K

k=1

{
(Âk −Ak)/B− (B̂−

B)Ak/B
2
}
πk + op(n

−1/2) =
∑K

k=1(Âk − Ak)(πk − πDR,K)/B + op(n
−1/2).

Decompose Âk − Ak = (Q̂k − Qk)Pk + (P̂k − Pk)Qk + op(n
−1/2). It is

straightforward to show that q̂k − qk = n−1
∑n

i=1

{
(TiD

k
i − E

[
TiD

k
i

]
)/pk −

(Dk
i − pk)qk/pk

}
+ op(n

−1/2) = n−1
∑n

i=1(Ti − qk)Dk
i /pk + op(n

−1/2).

P̂k−Pk =
∑K

l=k

{
(p̂l−pl)(ql−E [T ])+pl

(
q̂l−ql− T̄ +E [T ]

)}
+op(n

−1/2) =

n−1
∑n

i=1

∑K
l=k

{
(Dli − pl)(ql − E [T ]) + pl

(
(Ti − ql)Dli/pl − Ti + E [T ]

)}
+

op(n
−1/2) = n−1

∑n
i=1

∑K
l=k

(
Dli − pl

)(
Ti − E [T ]

)
− Pk + op(n

−1/2).

Therefore
∑K

k=1(λ̂k−λk)πk =
∑K

k=1(Âk−Ak)(πk−πDR,K)/B+op(n
−1/2) =

n−1
∑n

i=1

∑K
k=1R4ki + op(n

−1/2), where

Rk
4i =

{(
(Ti − qk)

Dk
i

pk
− (Ti − qk−1)

Dk−1
i

pk−1

) K∑
l=k

pl(ql − E [T ]) + (qk − qk−1)

(Ti − E [T ])
K∑
l=k

(
Dli − pl

)} πk − πDR,K∑K
k=1(qk − qk−1)

∑K
l=k pl(ql − E [T ]).

.

(S.12)
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By Rk
i given in (S.11) and Rk

4i given in (S.12), we obtain the influence function

RKi =
K∑
k=1

λk
(Dk

i +Dk−1
i )Rk

i

(pk + pk−1)Bk
+Rk

4i. (S.13)

Asymptotic normality follows the same arguments in the proof of Theo-

rem 4 with the following modifications. The law of iterated expectations yields

σ2
Kn = σ2

K1 + σ2
K2n + σ2

K3, where σ2
K1 = E

[(∑K
k=1 λk

(Dk
i +Dk−1

i )Rk
1i

(pk+pk−1)Bk +Rk
4i

)2
]
,

σ2
K2n = E

[(∑K
k=1 λk

(Dk
i +Dk−1

i )Rk
2i

(pk+pk−1)Bk

)2
]
, and σ2

K3 = E
[(∑K

k=1 λk
(Dk

i +Dk−1
i )R3i

(pk+pk−1)Bk

)2
]
.

S.4 Variance Estimation

For convenience, we first collect the relevant notations and then discuss im-

plementation details.

S.4.1 Notation:

Let φi(v) = ϑ(v)−1
(
1(Ti ≤ S ′ia(v))−v

)
Si. Let the trimming function χ+(x, v) =

1(∆q(x, v) ≥ %). Let S1i = (1, X ′i, 1, X
′
i)
′, S0i = (1, X ′i, 0,0

′
(dx×1))

′, ∆Si =

S1i − S0i, ∂tmz(X, qz) = ∂
∂t
mz(X, t)|t=qz(X,v).

R+
1i =

∫ 1

0

(
E
[(
∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0 − πDR+ ∆S

)
χ+(X, v)

]
+

∂

∂α
E
[(

∆m(X, v)− πDR+ ∆q(X, v)
)

1(∆S ′α ≥ %)
] ∣∣
α=a(v)

)′
φi(v)dv,

R+
2i = D+′G−1ψJ(Xi, Ti, Zi)ei,with G ≡ E

[
ψJ(X,T, Z)ψJ(X,T, Z)′

]
= E [Ψ′Ψ/n] ,

D+ = D+
1 −D+

0 ,D+
z =

∫ 1

0

E
[
ψJ(X, qz(X, v), z)χ+(X, v)

]
dv,

R+
3i =

∫ 1

0

(
∆m(Xi, v)− πDR+ ∆q(Xi, v)

)
χ+(Xi, v)dv,

B+ =

∫ 1

0

∫
X

∆q(x, v)χ+(x, v)f(x)dxdv.
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Let χ−(x, v) = 1(∆q(x, v) < −%) andB− =
∫ 1

0

∫
X ∆q(x, v)χ−(x, v)f(x)dxdv.

Let B = B+ −B−.

For πDR− , define R−i as R+
i by replacing + with − in all the components in

R+
i .

For πDR, define Ri = R1i +R2i +R3i, where Rki = R+
ki−R

−
ki for k = 1, 2, 3

except that one needs to replace πDR+ and πDR− with πDR in R+
ki and R−ki,

k = 1, 3.

S.4.2 Implementation

We estimate σ2 by the sample analogue plug-in estimator, i.e., σ̂2 = σ̂2
1 + σ̂2

2 +

σ̂2
3, where σ̂2

k = n−1
∑n

i=1 R̂
2
ki/B̂

2, B̂ and R̂ki are consistent estimators for B

and Rki for k = 1, 2, 3, respectively, given in (S.8):

For R̂1i, ∂tm̂z is directly computed from Step 2. From the linear quantile

regression literature, it is standard ϑ̂(v) = n−1
∑n

i=1 f̂T |X,Z(S ′iâ(v)|Xi, Zi)SiS
′
i.

The derivative ∂
∂α
E
[
∆m(X, v)1(∆S ′iα ≥ %)

]∣∣
α=a(v)

may be estimated by a

numerical differentiation, i.e., n−1
∑n

i=1 ∆m̂(Xi, v)
(
1(∆S ′i(â(v) + ι/2) ≥ %n)−

1(∆S ′i(â(v)− ι/2) ≥ %n)
)/
ι for some small ι > 0.

For R̂2i, let êi = Yi−ψJ(Xi, Ti, Zi)
′ĉ, Ω̂ = n−1

∑n
i=1 ê

2
iψ

J(Xi, Ti, Zi)ψ
J(Xi,

Ti, Zi)
′, Ĝ = Ψ′Ψ/n, and 0̂ = Ĝ−1Ω̂Ĝ−1. Let D̂+ = n−1

∑n
i=1 l

−1
∑

v∈V (l) ψ̂
J

i

χ̂+(Xi, v). Let D̂ = D̂+ − D̂−. Then σ̂2
2n = D̂′0̂D̂, σ̂2

+2 = D̂+
′
0̂D̂+, and

σ̂2
−2 = D̂−

′
0̂D̂−.

R̂+
3i = l−1

∑
v∈V (l)

(
∆m̂(Xi, v)− π̂DR+ ∆q̂(Xi, v)

)
χ̂+(Xi, v), and B̂+ is anal-

ogous.

Consider % = 0. In practice, one may choose %n = 1.96×minv∈V (l),{Xi}i=1,...,n

se(∆T̂ (Xi, v))/ log(n). This procedure includes insignificant estimates of

∆T̂ (Xi, v) (at the 5% significance level).17

17Step 1 is Op(n
−1/2), so the estimation error of χ is of first order asymptotically by

Lemma 5. The rate condition on
√
n(%n − %) = o(1) means that using %n rather than % is

first-order asymptotically ignorable.
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