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Abstract

This paper identifies and estimates causal effects of a continuous variable, or treatment, by

exploiting distributional changes in the treatment in response to a binary or discrete instrument.

We explore two alternative assumptions regarding the heterogeneity of the instrument’s first-

stage effect on the treatment: LATE-type monotonicity and treatment rank similarity, which

have been studied in distinct strands of literature. Under treatment rank similarity, we derive

simple estimands for average treatment effects at different treatment quantiles, capturing treat-

ment effect heterogeneity across treatment levels. Additionally, we propose a doubly robust

causal estimand that identifies a weighted average treatment effect for all units responsive to

the instrument when either of these two non-nested assumptions holds. Our doubly robust

framework subsumes LATE-type estimands as a special case. We also provide asymptotically

normal semiparametric estimators and demonstrate the proposed methods in an empirical ap-

plication estimating the effects of sleep on well-being.
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1 Introduction

Many empirical studies aim to estimate causal effects of continuously distributed endogenous

variables (or treatments), such as air pollution concentration, poverty rates, income, prices, birth

weights, and time use. A common approach is to apply two-stage least squares (2SLS) using a

binary or discrete instrumental variable (IV). When the IV is binary, the 2SLS estimator (without

considering covariates) effectively computes the Wald ratio:

τWald :=
E [Y |Z = 1]− E [Y |Z = 0]

E [T |Z = 1]− E [T |Z = 0]
, (1)

where Y is the outcome of interest, Z is the binary instrument and T is the treatment. For τWald

to be feasible, the treatment must exhibit a non-zero mean change across IV levels. Furthermore,

when treatment effects are heterogeneous and individuals select treatment intensity based on idio-

syncratic gains, the causal interpretation of τWald relies on a monotonicity assumption, i.e., the

treatment changes in one direction in response to the IV changes. This monotonicity assumption

is introduced in Imbens and Angrist (1994). They show that under monotonicity, τWald identifies

a local average treatment effect (LATE) for a binary treatment.

The simplicity and intuitiveness of the 2SLS approach make it widely popular. However, for

continuous treatments, 2SLS may overlook where the true changes are in the treatment distribution.

Policies often aim to shift one or two tails of the treatment distribution or change variance rather

than the mean (e.g., minimum wage laws, pollution ceilings, or minimum capital requirements).

As a result, treatment changes concentrate at specific treatment quantiles. Solely considering mean

changes may lead to weak identification or even identification failure.

To address this limitation, we explore distributional changes in the first stage, drawing on in-

sights from the non-separable IV literature, See, e.g., Chesher (2001, 2002, 2003), Imbens and

Newey (2002, 2009), and Florens et al., (2008). These existing studies generally require a con-

tinutous IV and seek to identify some structural parameters. The commonly employed first-stage

restriction in the literature is treatment rank invariance or more generally treatment rank similarity.

2



The results have not been widely used by empirical researchers. One of the reasons might be that

continuous IVs are rare in practice. We therefor focus on the empirically relevant case of binary or

discrete IVs. For example, in randomized experiments - the ideal setting for the causal IV model

used in this paper - researchers typically randomize discrete, most commonly binary, IVs.

We identify average effects at specific treatment quantiles, as well as weighted averages of

these quantile-specific effects, under treatment rank invariance or similarity. The estimand for

the former resembles the Wald ratio but is conditional on observed treatment ranks. Furthermore,

we establish a doubly robust (DR) identification result: the estimand identifies aggregate causal

effects for all individuals responsive to IV changes (the largest subpopulation for which causal

identification is possible) under either LATE-type monotonicity or treatment rank similarity. When

monotonicity holds, the DR estimand aligns with the LATE estimand. Otherwise, it identifies a

weighted average treatment effect for the subpopulation affected by the IV under treatment rank

similarity. Notably, the DR estimand remains valid even when the mean treatment change is zero,

as long as distributional changes exist.

Both the LATE monotonicity and treatment rank similarity impose restrictions on first-stage

IV effects. While these assumptions are mutually exclusive, each aligns with specific treatment

selection behaviors and is refutable but not verifiable based on their testable implications (e.g.,

Angrist and Imbens, 1995; Dong and Shu, 2018)1. That is, existing tests cannot establish their

validity even though they may show that these assumptions are invalid. Our DR estimand thus

provides a flexible tool for causal inference under more general conditions.

Our identification is nonparametric in that we consider non-separable models for both the first-

stage and the outcome equation. Non-separable models allow for treatment effect heterogeneity

and individuals self-selection of different treatment levels based on idiosyncratic gains, both of

which are important features of the data as supported by economic theory and empirical evidence.

Based on our identification results, we propose simple estimators for average effects at different

1For the testable implication of the LATE-type monotonicity when treatment is multi-valued, see, e.g., Angrist and

Imbens (1995) and Fiorini and Stevens (2021). For tests of the testable implication of rank similarity, see Dong and

Shu (2018) and Frandsen and Lefgren (2018).
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treatment quantiles (conditional or unconditional on covariates) and a DR estimator for weighted

average effects. These estimators are shown to be consistent and asymptotically normal. We illus-

trate the utility of our methods by analyzing the impact of sleep duration on well-being using data

from Bessone et al. (2021). In this empirical application, we uncover nuanced insights into treat-

ment effect heterogeneity across different treatment levels and demonstrate how the DR approach

complements traditional IV or 2SLS estimates.2

This paper builds upon and integrates two distinct strands of literature: the LATE framework

and the non-separable IV model. The LATE model is introduced in Imbens and Angrist (1994),

which is further extended in Angrist and Imbens (1995), Angrist, Imbens and Rubin (1996), An-

grist et al. (2000), Abadie (2003), Frölich (2007), de Chaisemartin (2017), Dahl, Huber, and Mel-

lace (2023), etc. The LATE model relies on the monotonicity assumption mentioned previously or

some weaker versions of it for causal identification. Many studies in the non-separable IV model

literature explore rank invariance or rank similarity in the first stage for causal identification. In

addition to the aforementioned Chesher (2001, 2002, 2003), Imbens and Newey (2002, 2009), and

Florens et al. (2008), more recently Torgovitsky (2015), and D’Haultfoeuille and Février (2015)

provide detailed discussions of the identifying power of rank restrictions in the treatment and/or

in the outcome equation. In addition, Masten and Torgovitsky (2016) consider a random corre-

lated coefficients model and utilize treatment rank invariance to identify the average partial effect

of continuous treatment variables, using binary or discrete instruments. For the DR identification

approach, a few existing studies take this approach, see, e.g., Dong, Lee, and Gou (2023) and

Arkhangelsky and Imbens (2022). Both papers are set in different frameworks than the current

one. Dong, Lee, and Gou (2023) study the regression discontinuity design, while Arkhangelsky

and Imbens (2022) investigate the panel data model.3

The rest of the paper proceeds as follows. Section 2 presents identification results for the basic

2The replication package, including Stata code for our estimators and a link to the data, is available upon request.
3The current paper differs from the regression discontinuity setup of Dong, Lee, and Gou (2023) in multiple

dimensions, including allowing the IV independence and treatment rank similarity to hold conditional on a vector

of continuous and/or discrete covariates, allowing for a multi-valued IV or a vector of discrete IVs and completely

different estimation and inference procedures.
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setup without covariates. Section 3 extends these results to accomodate covariates. Section 4

develops semiparametric estimators and establishes their consistency and asymptotic normality.

Section 5 discusses extensions to a multi-valued IV or a vector of discrete IVs, with or without

covariates. Section 6 presents our empirical application. Section 7 concludes.

2 Identification in the Basic Setup

Let Y ∈ Y ⊂ R be the outcome of interest, e.g., a measure of well-being. Y can be continuous or

discrete. Let T ∈ T ⊂ R be a continuous treatment variable, e.g., sleep time. Let Z ∈ {0, 1} be a

binary IV for T , e.g., an indicator for being randomly assigned to a group receiving encouragement

or financial incentives to increase night sleep.

To present the core ideas, we suppress all the covariates in this section. The general setup with

covariates is presented in the next section. Assume that Y and T are generated as

Y = g (T, ε) , (2)

T = h (Z ,U ) , (3)

where ε captures all the other factors other than T that affect Y , and similarly U captures all the

other reduced-form factors other than Z that affect T . The outcome disturbance ε ∈ E ⊂ Rdε is

allowed to be of arbitrary dimension, so dε does not need to be finite. Without loss of generality,

rewrite eq. (3) as

T = Z T1 (U1)+ (1− Z) T0 (U0) , (4)

where Tz (·) , z = 0, 1 are some unknown functions, and the reduced-form disturbance Uz ∈ Uz ⊂

R, z = 0, 1. Later we impose an assumption that essentially requires Tz (·) to be the quantile

functions and Uz to be the rank variables. Note by construction U = ZU1 + (1− Z)U0.

Define Yt :=g (t, ε) as the potential outcome when T is exogenously set to be t . Further define

Tz:=Tz (Uz), z = 0, 1, as the potential treatment when Z is exogenously set to be z. Denote the
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support of Tz as Tz . The observed treatment is then T = Z T1 + (1− Z) T0. We use F· (·) and

F·|· (·|·) to denote the unconditional cumulative distribution function (CDF) and conditional CDF,

respectively.

Assumption 1 (Treatment quantile representation). Tz(u) is strictly increasing in u, and Uz ∼

Uni f (0, 1), z = 0, 1.

Assumption 1 requires that the potential treatment Tz is continuous with a strictly increasing

CDF. The condition Uz ∼ Uni f (0, 1) involves a normalization. This kind of normalization is

necessary, since the identification results hold up to a monotonic transformation of Uz , as long

as Uz is continuous with a strictly increasing CDF. See discussions in Matzkin (2003) and more

recently Torgovitsky (2015). By Assumption 1, Tz(u) is the u quantile of Tz , and Uz = FTz
(Tz)

is the rank of the potential treatment. Further, U = ZU1 + (1− Z)U0 is the observed treatment

rank.

Assumption 2 (Independence). Z ⊥ (Uz, ε), z = 0, 1.

Assumption 2 essentially requires Z to be randomly assigned. More generally, we can allow

the independence condition to hold only after conditioning on relevant pre-determined covariates,

which we will discuss in the next session. Assumptions 1 and 2 imply U ⊥ Z , because for z = 0, 1,

Pr (U ≤ τ |Z = z) = Pr (Uz ≤ τ |Z = z) = Pr (Uz ≤ τ) = τ , where the last equality follows the

condition Z ⊥ Uz as implied by Assumption 2.

Assumption 3 (Monotonicity). Pr (T1 ≥ T0) = 1.

Assumption 3 requires that treatment can only change in one direction when Z changes - with-

out loss of generality, we normalize it to be non-decreasing. For example, this assumption holds in

the usual linear regression model of T with a constant coefficient on Z .

Assumption 3 can not be tested directly, but it has testable implications. It implies T1(u) −

T0(u) ≥ 0 for all u ∈ (0, 1), i.e., T1 stochastically dominates T0. Since stochastic dominance is

a necessary but not sufficient condition for Assumption 3, rejecting stochastic dominance could
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mean monotonicity does not hold, but failing to reject does not necessarily mean that monotonicity

holds. That is, Assumption 3 is refutable but not verifiable.

Assumption 4 (First-stage). The set {u ∈ (0, 1) : T1 (u) 6= T0 (u)} has positive Lebesgue measure.

Assumption 4 requires that the distribution of T changes with Z . Assumption 4 is strictly

weaker than the standard first-stage assumption of the LATE model, which requires E [T1] 6=

E [T0]. For example, when the policy instrument Z affects the variance or shifts the tails of the

treatment distribution but otherwise leaves the average treatment level unaffected, we have the

standard LATE first-stage assumption fails, but the above Assumption 4 holds.

Pr (T1 6= T0) = 1, which is further equivalent to Pr (T1 = T0) = 0

Assumptions 2, 3 and 4 together imply E [T |Z = 1] − E [T |Z = 0] > 0. For convenience

of exposition, we generalize the standard definition of compliers, which is defined for a binary

treatment (Angrist, Imbens, and Rubin, 1996). Let Tc = {(t0, t1) ∈ T0 × T1 : t1 − t0 > 0} be

the set of all types of compliers. Define L AT Ec(t0, t1) = E
[

Yt1
−Yt0

t1−t0
|T1 = t1, T0 = t0

]
for any

(t0, t1) ∈ Tc. L AT Ec(t0, t1) is the local average treatment effect for complier type (t0, t1) ∈ Tc.

For example, in the case of a binary treatment, τWald = L AT Ec(0, 1). More generally when

treatment is continuous as in our setup, τWald is a weighted average of L AT Ec(t0, t1) for all

(t0, t1) ∈ Tc. We formalize this result in the following lemma.

Lemma 1. If Assumptions 1 - 4 hold, then

τWald =

∫∫
Tc

wt0,t1 L AT Ec (t0, t1) FT0,T1
(dt0, dt1)

where wt0,t1 = (t1 − t0) /
∫∫
Tc
(t1 − t0) FT0,T1

(dt0, dt1).

The above lemma states that under Assumptions 1-4, τWald in eq. (1) identifies a weighted

average of the average treatment effects for different compliers, where the weights are proportional

to their treatment intensity change (t1 − t0). Frölich (2007) gives a comparable expression when

treatment is multi-valued.
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When g(T, ε) is continuously differentiable in its first argument, the identified causal parameter

can be further expressed as a weighted average derivative of Y w.r.t. T , following Angrist et al.

(2000, Theorem 1). The exact form of the weighted average derivative is provided in the proof of

Lemma 1 in the Appendix.4

In the following, we provide an alternative assumption to Assumption 3, which allows us to

identify treatment effect heterogeneity at different treatment levels.

Assumption 5 (Treatment Rank Similarity). U0|ε ∼ U1|ε.

Assumption 5 states that if two individuals with the same ε value, then the probability distrib-

ution of their potential treatment ranks stays the same. Without conditioning on ε, U0 and U1 both

follow a uniform distribution over the unit interval due to normalization, so FU0
(u) = FU1

(u) by

construction. Assumption 5 implies ε|U0 = u ∼ ε|U1 = u by Bayes’ theorem, so ε has the same

distribution at the same rank of the potential treatment.

A slightly stronger assumption is treatment rank invariance, i.e., U0 = U1. Treatment rank

invariance holds trivially when the treatment model is additively separable in a scalar disturbance,

but this assumption does not require additive separability in general. Treatment rank invariance

sometime is stated as monotonicity in a scalar disturbance in the treatment model (see, e.g., Imbens

and Newey, 2009). Treatment rank similarity in Assumption 5 relaxes treatment rank invariance -

instead of assuming the ranks of the potential treatments to be the same, it only assumes that they

have the same conditional probability distribution for any given ε, and thereby permits random

deviations from the common rank level between the potential treatments. For example, if the

common rank level for night sleep (the actual time one is in sleep as measured by actigraphy) is

determined by individuals’ biological clock (possibly after conditioning on observable covariates

as discussed in our general setup), which does not change with Z , then rank similarity permits that

the increase in night sleep is subject to some random factors.

Lemma 2. Under Assumptions 1, 2 and 5, T ⊥ ε|U.

4Our weighted average derivative differs from that of Angrist et al. (2000), who define theirs in terms of overlap-

ping subpopulations. However, the two expressions are ultimately equivalent.
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Lemma 2 suggests that U is a control variable as defined by Imbens and Newey (2009), i.e.,

conditional on the observed treatment rank U , T is exogenous to Y . Intuitively, under Assumptions

2 and 5 and holding U fixed, the only variation in T is the exogenous variation induced by Z .5

Based on Lemma 2, one may condition on U in the outcome equation to estimate the causal

effect of T on Y . Let U ={u ∈ (0, 1) : T1(u) 6= T0(u)}. For any u ∈ U , define

τ(u):=
1Y (u)

1T (u)
. (5)

where for M = Y, T,

1M (u) = E [M |Z = 1,U = u]− E [M |Z = 0,U = u] .

The numerator captures the reduced-form effect of Z on Y given U = u, while the denominator

captures the first-stage treatment change given U = u. The corresponding estimator (by replacing

the population means and ranks by their sample analogues) is analogous to the indirect least square

estimator in the linear IV model setting.

Note that conditional on U = u, with a binary Z , the treatment T can potentially take two

values T0 (u) and T1(u). When T changes exogenously from T0(u) and T1(u), the corresponding

average effect on the outcome is E
[
YT1(u) − YT0(u)|U = u

]
. The following theorem clarifies what

τ(u) identifies.

Theorem 1. If Assumptions 1, 2, 4 and 5 hold, then for any u ∈ U ,

τ(u) = E
[

YT1(u) − YT0(u)

T1(u)− T0(u)
|U = u

]
(6)

=

∫
{g (T1(u), e)− g (T0 (u) , e)}

1

T1(u)− T0(u)
Fε|U (de|u) . (7)

5This result is closely related to Theorem 1 of Imbens and Newey (2009), except that we assume rank similarity

instead of rank invariance and that we focus on a binary IV instead of an IV that may have a large support. The large

support is required to identify structural parameters, like the average structural function, when the outcome disturbance

is of arbitrary dimension.
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Theorem 1 shows that τ(u) captures an average (per unit) treatment effect at the u quantile

of the treatment, so it can be used to measure treatment effect heterogeneity at different treatment

intensities. The denominator in eq. (6) reflects the fact that Tz (u) /∈ {0, 1} in general. In the integral

in eq. (7), T exogenously changes from T0(u) to T1(u) while holding ε fixed at e, so τ(u) is causal

from a ceteris paribus point of view.

To see the results in Theorem 1, note

E [Y |Z = 1,U = u] = E
[
g (T1 (u) , ε) |Z = 1,U = u

]
= E

[
g (T1(u), ε) |U = u

]
= E

[
YT1(u)|U = u

]
where the first equality follows from the models of Y and T , (2) and (4), respectively, the second

equality follows from the condition Z ⊥ ε|U as shown in the proof of Lemma 2, and the last equal-

ity is by the definition of the potential outcome. One can similarly show E [Y |Z = 0,U = u] =

E
[
YT0(u)|U = u

]
. That is, we can identify E

[
YTz(u)|U = u

]
for z = 0, 1 and u ∈ U . Ideally

one may wish to recover E [Yt ] for any t ∈ T , which is known as the average dose-response or

structural function. However, it is impossible to identify E [Yt ] for any t ∈ T without further

assumptions, since we have a binary instrument and we do not restrict the dimensionality of the

outcome disturbance, i.e., we do not impose rank invariance in the outcome model.

Let qz (u) = F−1
T |Z (u|z) be the conditional u quantile of T given Z = z, and further 1q (u) =

q1 (u)− q0 (u). By eq. (4) and Assumptions 1 and 2, U and T follow a one-to-one mapping given

Z = z, and conditioning on U = u is the same as conditioning on T = qz (u). Let the conditional

mean function of Y given Z and T be mz(t) = E [Y |Z = z, T = t], z = 0, 1. One can alternatively

write τ(u) in eq. (5) as

τ(u) =
m1(q1(u))− m0(q0(u))

q1 (u)− q0 (u)
. (8)

We use eq. (8) to construct our estimator later.
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Oftentimes, researchers or policy makers are interested in some summary measure of the over-

all treatment effect. With τ(u), one can further identify and estimate a weighted average of τ (u),

i.e.,

τ RS (w) :=

∫
U
τ(u)w(u)du

for any known or estimable weighting function w(u) such that w(u) ≥ 0 and
∫
U w(u)du = 1.

The weighting function w(u) must be non-negative; otherwise, τ RS (w) may represent a weighted

difference rather than a weighted average of the treatment effects for different units. For example,

if U = (0, 1), and one chooses w(u) = 1, then τ RS (w) = E [τ(U )].

Under treatment rank similarity (Assumption 5), τ RS (w) represents a weighted average of the

treatment effects for all units responsive to the instrument. By Lemma 1, τWald is a weighted

average of the treatment effects for all units responsive to the instrument under monotonicity (As-

sumption 3). Notably, both assumptions impose restrictions on the heterogeneity of the first-stage

IV effect: monotonicity enforces a sign restriction, whereas treatment rank similarity imposes a

rank restriction. Neither assumption implies the other. Moreover, while these assumptions may

be subject to empirical refutation, they cannot be directly verified. To address this, we consider a

weighting function that ensures a doubly robust (DR) property for the resulting estimand, meaning

the estimand remains valid under either of the two alternative identifying assumptions.

Proposition 1. Let Assumptions 1, 2 and 4 hold. Furthermore, if either Assumption 3 or Assump-

tion 5 holds, then τ DR:=
∫
U τ(u)w

DR(u)du for wDR(u) = |1q (u) |/
∫
U |1q (u) |du identifies a

weighted average of the average treatment effects among all the units for which T1 6= T0.

Proposition 1 synthesizes the results of Lemma 1 and Theorem 1. It shows that under ei-

ther first-stage restriction on the IV effect heterogeneity, τ DR identifies a weighted average of the

treatment effects for all units that respond to the IV change. These units constitute the largest

identifiable subpopulation for which causal effects can be determined without imposing additional

restrictions. The two alternative first-stage assumptions define the nature of these responses: ei-

ther units change their treatment in a monotonic manner, or their treatment ranks retain the same
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probability distribution.

When monotonicity (Assumption 3) holds, wDR(u) = 1q (u) /
∫
U 1q (u) du. Consequently,

τ DR =

∫ 1

0
{E [Y |Z = 1,U = u]− E [Y |Z = 0,U = u]} du∫ 1

0
1q (u) du

=
E [Y |Z = 1]− E [Y |Z = 0]

E [T |Z = 1]− E [T |Z = 0]

= τWald

Thus, τ DR reduces to the standard LATE estimand τWald , as given by eq. (1), when monotonicity

holds. By Lemma 1, in this case, τ DR identifies a weighted average of the average treatment effects

for different compliers. On the other hand, when monotonicity (Assumption 3 ) does not hold, but

rank similarity (Assumption 5) does, τ DR becomes a weighted average of τ(u) for u ∈ U , and by

Theorem 1, τ(u) captures the average treatment effect at the u quantile of treatment. In either case,

τ DR identifies a weighted average of the average treatment effects for all units that adjust their

treatment levels in response to changes in the IV. The weights are proportional to the magnitude of

their treatment changes.

The weighting function in Proposition 1 allows 1q (u) to change signs, indicating that the

LATE monotonicity condition does not hold. Consequently, τ DR may average over two distinct

groups: those who increase their treatment levels and those who decrease them in response to

changes in the IV6 Since individual treatment response types are not point-identified, it is not

possible to separately identify causal effects for each type. However, if desired, one can define DR

estimands separately for treatment quantiles where 1q (u) > 0 and those where 1q (u) < 0. We

explore this further in Section S.2 in the Appendix.

So far, we have focused our discussion on (weighted) average effects. With a continuous

outcome, one may easily extend the above identification results to identify FYTz (u)|U
(y|u), z = 0, 1

and hence the average distributional effects at a given treatment quantile. In particular, for any

6This issue is not unique to our setting; it arises whenever a researcher estimates average effects while allowing

treatment changes to switch signs.
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u ∈ U , FYTz (u)|U
(y|u) = E

[
1 (Y ≤ y) |U = u, Z = z

]
, z = 0, 1. One may further develop an

analogous DR estimand for the effect of T on 1 (Y ≤ y) for any y ∈ Y.

3 Identification with Covariates

The previous section introduces our core idea without accounting for covariates. However, there

are at least three compelling reasons to incorporate covariates into the analysis. First, conditioning

on covariates is necessary when the IV itself is confounded, such that the IV assumptions are valid

only conditional on covariates. Second, rank similarity is more plausible when conditioned on all

relevant covariates, allowing the remaining model error to be treated as a scalar. For further discus-

sion on this point, see Chernozhukov and Hansen (2005, 2006). Third, the first-stage monotonicity

assumption can be relaxed by permitting the direction of monotonicity to vary with covariates.

When covariates are included in the non-separable models for Y and T , i.e., (2) and (3), and

all previous assumptions hold conditional on covariates, the earlier results naturally extend to this

conditional framework. However, these conditional results may have limited practical utility, as

presenting all conditional findings can become cumbersome, especially when dealing with many

continuous covariates. In this section, we aim to identify unconditional weighted average effects

while accommodating the presence of covariates.

Let X ∈ X ⊂ RdX denote the vector of covariates. We consider the following models for Y

and T :

Y = G (T, X, ε) , (9)

T = H(Z , X, V )

= Z T1 (X, V1)+ (1− Z) T0 (X, V0) , (10)

where by construction V = V1 Z + V0 (1− Z).

As before, Tz:=Tz (X, Vz) is the potential treatment when Z is exogenously set to be z ∈ {0, 1}

and Yt :=G (t, X, ε) is the potential outcome when T is exogenously set to be t ∈ T ⊂ R. We
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extend Assumptions 1 - 5 to condition on covariates X as follows.

Assumption C1 (Conditional Treatment Quantile). For any x ∈ X , Tz(x, v), z = 0, 1, is strictly

increasing in v, and Vz ∼ Uni f (0, 1).

By Assumption C1, Tz (x, v) is the conditional quantile function of Tz given X , and Vz =

FTz |X (Tz|X) is the conditional rank of Tz given X .

Assumption C2 (Conditional Independence). Z ⊥ (Vz, ε) |X, z = 0, 1.

Assumption C3 (Conditional Monotonicity). Either Pr (T1 ≥ T0|X = x) = 1

or Pr (T1 ≤ T0|X = x) = 1 for any x ∈ X .

Assumption C4 (Conditional First-stage). For at least some x ∈ X , the set

{v ∈ (0, 1) : T0 (x, v) 6= T1 (x, v)} has positive Lebesgue measure.

Assumption C5 (Conditional Treatment Rank Similarity). V1|(ε, X) ∼ V0|(ε, X).

Assumption C6 (Common Support). Pr (Z = 1|X = x) ∈ (0, 1) for any x ∈ X .

Assumption C2 requires Z to be unconfounded, instead of being randomly assigned as required

by Assumption 2. Assumption C2 requires conditional independence, instead of the stronger joint

or full independence (Vz, ε, X) ⊥ Z , so exogeneity of X is not required - e.g., X can be correlated

with Z . Assumption C3 allows the direction of monotonicity to change with covariates, which

relaxes its unconditional counterpart Assumption 3. Note that under Assumptions C1-C4 and C6,

if Assumption C3 holds, then the direction of the monotonicity can be identified by the sign of

E [T |Z = 1, X = x]− E [T |Z = 0, X = x]. Assumption C6 is a common support assumption to

ensure that all the parameters we consider are well-defined. In addition, Assumption C5 requires

that treatment rank similarity holds only among the subgroup of units with the same observed

covariate values, which is weaker than Assumption 5.7 The following Lemma extends Lemma 2

to allow for covariates.

7Note that Vz is defined conditionally on X , while Uz is defined unconditionally. Given that X are determi-

nants of Y , one can let X be an observable sub-vector of ε in Y = g (T, ε). That is, ε = (X, ε). Assumption

5 U1|ε ∼ U0|ε implies U1|X ∼ U0|X , so FU1|X (u|x) = FU0|X (u|x) for any u ∈ (0, 1) and x ∈ X . It fol-
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Lemma 3. Under Assumptions C1, C2 and C5, T ⊥ ε| (V, X).

Lemma 3 is a conditional (on X ) version of Lemma 2. It establishes that V is a control variable

given X . For M = Y , T , let

1M (x, v) = E [M |Z = 1, X = x, V = v]− E [M |Z = 0, X = x, V = v] .

The resulting IV estimand, conditional on X = x and V = v, is given by

π(x, v):=
1Y (x, v)

1T (x, v)
, (11)

whenever 1T (x, v) 6= 0.

Let qz (x, v) = F−1
T |Z ,X (v|z, x) be the conditional v quantile of T given Z = z and X = x .

By eq. (10) and Assumptions C1 and C2, T and V follow a one-to-one mapping given Z = z and

X = x , i.e., conditioning on V = v is the same as conditioning on T = qz (x, v) in (11). Then

π(x, v) can be re-written as

π(x, v) =
m1(x, q1(x, v))− m0(x, q0(x, v))

q1 (x, v)− q0 (x, v)
,

where mz(x, t) = E [Y |Z = z, X = x, T = t].

Let 1q(x, v) = q1 (v, x) − q0 (v, x). By construction, 1T (x, v) = 1q(x, v). Assumptions

C1 and C6 ensure that 1q(x, v) is well defined for all x ∈ X and v ∈ (0, 1). Let S = {(x, v) ∈

X×(0, 1): 1q(x, v) 6= 0}. We have the following Theorem 2, which extends Theorem 1.

lows that FV0|X,ε (v|X = x, ε = e) = E [1 (V0 ≤ v) |X = x, ε = e] = E
[
1
(
FU0|X (U0|x) ≤ v

)
|X = x, ε = e

]
=

E
[
1
(
FU1|X (U1|x) ≤ v

)
|X = x, ε = e

]
= FV1|X,ε (v|X = x, ε = e) for any v, x , and e in their support, where

the second equality follows from Vz = FT z|X (Tz |X) by Assumption C1, which can be further written as Vz =
FU z|X (Uz |X), z = 0, 1, since Tz and Uz follow a one-to-one mapping by Assumption 1. Therefore, V0|X, ε ∼
V1|X, ε.
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Theorem 2. If Assumptions C1, C2, C4, C5 and C6 hold, then for any (x, v) ∈ S ,

π(x, v) = E
[

YT1(x,v) − YT0(x,v)

T1(x, v)− T0(x, v)
|X = x, V = v

]
(12)

=

∫
{G (T1(x, v), x, e)− G (T0(x, v), x, e)}

Fε|X,V (de|x, v)

T1(x, v)− T0(x, v)
. (13)

Theorem 2 shows that π(x, v) identifies a conditional weighted average treatment effect at the

conditional v quantile of the treatment given X = x . It is clear from eq. (13) that π(x, v) represents

the causal effect of an exogenous change in treatment from T0 (x, v) to T1(x, v), while holding X

and ε fixed at x and e.

If desired, one may average π(x, v) over the distribution of X to obtain a weighted average

effect at the conditional v quantile of the treatment. For notational convenience, in the following,

we assume π(x, v) = 0 when 1q(x, v) = 0, so that π(x, v) is defined for all (x, v) ∈ X× (0, 1).

For example, for any v ∈ (0, 1) such that Pr (1q(X, v) 6= 0) > 0, one can define

π (v) :=

∫
X
π(x, v)wv(x)dx, (14)

where wv(x) = |1q(x, v)| fX (x) /
∫
X |1q(x, v)| fX (x)dx . π (v) identifies a weighted average

effect at the conditional v quantile of the treatment. In contrast, τ(u) identifies an average effect at

the unconditional u quantile of the treatment. π (v) can be useful in investigating treatment effect

heterogeneity at the conditional v quantile of the treatment.

Consider now constructing a DR estimand for the overall unconditional weighted average effect

based on π(x, v). Since Z is valid only after conditioning on pre-determined covariates, τWald is

no longer a valid causal estimand. Let 1M (x) = E [M |Z = 1, X = x] − E [M |Z = 0, X = x],

M = Y, T . Further let I+ (x) = 1 (1T (x) ≥ 0) and I− (x) = 1 (1T (x) ≤ 0). Define

τWald_X :=

∫
X
{
I+ (x)1Y (x)− I− (x)1Y (x)

}
fX (x) dx∫

X {I+ (x)1T (x)− I− (x)1T (x)} fX (x) dx
. (15)
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A special case of Eq. (15) nder the stronger assumption of unconditional monotonicity (As-

sumption 3) is proposed in Frölich (2007) for binary or discrete treatments. Importantly, in eq. (15),

the numerator does not simplify to E [Y |Z = 1]−E [Y |Z = 0], nor does the denominator simplify

to E [T |Z = 1] − E [T |Z = 0], as X is not assumed to be independent of Z . Consequently, the

distributions of X conditional on Z = 0 and Z = 1 generally differ.

Let Tc,d = {(t0, t1) ∈ T0 × T1 : t1 6= t0} be the set of all types of compliers and defiers. Note

that L AT Ec(t0, t1) = E
[

Yt1
−Yt0

t1−t0
|T1 = t1, T0 = t0

]
as written can be used for a complier average

treatment effect or a defier average treatment effect, depending on the ordering of t0 and t1. For

notational clarity, however, in this section, we relabel it and let L AT Ec,d(t0, t1) = E
[

Yt1
−Yt0

t1−t0
|T1 =

t1, T0 = t0

]
for (t0, t1) ∈ Tc,d .

Lemma 4. If Assumptions C1 - C4 and Assumption C6 hold, then

τWald_X =

∫∫
Tc,d

wt0,t1 L AT Ec,d (t0, t1) FT0,T1
(dt0, dt1)

where wt0,t1 = |t1 − t0|/
∫∫
Tc,d
|t1 − t0|FT0,T1

(dt0, dt1). If further Assumption 3 holds,

τWald_X =

∫∫
Tc

wt0,t1 L AT Ec (t0, t1) FT0,T1
(dt0, dt1) ,

where wt0,t1 = (t1 − t0) /
∫∫
Tc
(t1 − t0) FT0,T1

(dt0, dt1).

Lemma 4 shows that under unconditional monotonicity (Assumption 3, which rules out de-

fiers), τWald_X identifies the same unconditional effect as τWald would if Z were valid without

conditioning on covariates. More generally, when monotonicity varies with covariates (Assump-

tion C3), τWald_X identifies a weighted average of the average effects for both compliers and

defiers. Frölich (2007) establishes a similar result for binary or discrete treatments under uncondi-

tional monotonicity in the first stage. Based on Lemma 4, we construct a DR estimand incorporat-

ing τWald_X (instead of the invlide τWald) as a special case.
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Proposition 2. Let Assumptions C1, C2, C4 and C6 hold. Furthermore, if either C3 or C5 holds,

πDR:=

∫∫
S
π(x, v)w (x, v) dvdx

for w(x, v) = |1q(x, v)| fX (x)/
∫∫
S |1q(x, v)| fX (x)dvdx identifies a weighted average of the

average treatment effects among all the units for which T1 6= T0.

Note that under conditional monotonicity, for any (x, v) ∈ S, I+ (x) = 1 implies 1q (x, v) >

0 and I− (x) = 1 implies1q (x, v) < 0, so one has |1q(x, v)| = I+ (x)1q(x, v)−I− (x)1q (x, v),

while

π(x, v) =
1Y (x, v)

1q(x, v)

=
I+ (x)1Y (x, v)− I− (x)1Y (x, v)

I+ (x)1q(x, v)− I− (x)1q (x, v)
,

so that

πDR =

∫∫
S
{
I+ (x)1Y (x, v)− I− (x)1Y (x, v)

}
fX (x)dvdx∫∫

S {I+ (x)1q(x, v)− I− (x)1q (x, v)} fX (x)dvdx

=

∫∫
X×(0,1)

{
I+ (x)1Y (x, v)− I− (x)1Y (x, v)

}
fX (x)dvdx∫∫

X×(0,1) {I+ (x)1q(x, v)− I− (x)1q (x, v)} fX (x)dvdx

=

∫
X
{
I+ (x)1Y (x)− I− (x)1Y (x)

}
fX (x) dx∫

X {I+ (x)1T (x)− I− (x)1T (x)} fX (x) dx

= τWald_X ,

where the second equality follows from Assumptions C3 and C4, the third equality follows from

Assumption C2, which implies Vz ⊥ Z |X .

When conditional rank similarity (Assumption C5) holds, πDR is a weighted average of π (x, v)

for (x, v) ∈ S, which is a causal estimand by Theorem 2; Otherwise, when monotonicity (Assump-

tion C3_) holds, πDR = τWald_X , which, as shown in Lemma 4, identifies a weighted average of

L AT Ec,d(t0, t1) for (t0, t1) ∈ Tc,d . Either way, πDR identifies a weighted average of the average
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treatment effects for all the units responding to the IV change, representing the largest subpopu-

lation for which treatment effects can be identified without further assumptions. The weights are

proportional to both the magnitude of the treatment change and the density of X .

4 Estimation and Inference

In this section, we present a semi-parametric approach to estimation and inference for the general

case with covariates. The case without covariates, corresponding to having an empty covariate

set, is a special instance of this framework and is detailed in Section S.6 in the Appendix for

brevity. Our approach assumes that the variables of interest - the instrument and the treatment -

are modeled nonparametrically in the specifications for T and Y , respectively, while covariates are

incorporated linearly as control variables. This semi-parametric approach is motivated by practical

considerations: although fully nonparametric estimation and inference are theoretically viable,

they are often computationally prohibitive. Toward the end of this section, we briefly discuss

nonparametric inference and examine the practical implications of the additional functional form

assumptions required in our method.

4.1 Estimation

We assume a linear quantile regression model for the conditional v quantile of T given Z = z

and X = x , i.e., qz (x, v) = a0(v) + x ′a1(v) + za2(v) + zx ′a3(v); we further assume a partially

linear model for the conditional mean function of Y given Z , X and T , i.e., mz(x, t) = x ′b0 +

g0(t)+ zx ′b1 + zg1(t), where gz , z = 0, 1, are some unknown functions. Given a sample of i.i.d.

observations {(Yi , Ti , X i , Zi )}ni=1 for (Y, T, X, Z), we propose the following estimation procedure.

Step 1. Estimate the first-stage conditional treatment quantiles qz(x, v):

• q̂z (x, v) = â0(v)+ x ′̂a1(v)+ zâ2(v)+ zx ′̂a3(v)

for v ∈ V (l), where V (l) = {v1, v2, ..., vl} is the set of equally spaced quantiles over (0, 1).

Then 1q̂(x, v) = â2(v)+ x ′̂a3(v).
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Step 2. Estimate the conditional mean function mz(x, t) by a partially linear series estimator:

• m̂z(x, t) = x ′b̂0 + ĝ0(t)+ zx ′b̂1 + zĝ1(t)

Let 1m̂(X i , v) = m̂1(X i , q̂1(X i , v))− m̂0(X i , q̂0(X i , v)).

Step 3. For v ∈ V (l) and i = 1, ..., n, the plug-in estimator of π(X i , v) is π̂(X i , v) =

1m̂(X i , v)/1q̂(X i , v).

• Estimate π(v): π̂(v) =
∑

i π̂(X i , v)ŵv (X i ), where ŵv (X i ) =
|1q̂(X i ,v)|∑
i |1q̂(X i ,v)|

• Estimate πDR: π̂DR =
∑
v∈V (l)

∑
i π̂(X i , v)ŵ (X i , v), where ŵ (X i , v) =

|1q̂(X i ,v)|∑
v∈V (l)

∑
i |1q̂(X i ,v)|

.

The following provides details on the partial linear series estimator in Step 2. Let {ψ J1, ..., ψ J J }

be a collection of basis functions of t for approximating the nonparametric component gz(t). Let

ψ J (x, t, z) =
(
x ′, ψ J1(t), ..., ψ J J (t), zx ′, zψ J1(t), ..., zψ J J (t)

)′
, a 2(dx + J ) × 1 vector. Let

9 = (ψ J (X1, T1, Z1), ..., ψ
J (Xn, Tn, Zn))

′, a n × 2(dx + J ) matrix. Then the series coeffi-

cient estimate is ĉ = (9 ′9)−19 ′(Y1, ..., Yn)
′, and a series least squares estimator of mz(x, t) is

m̂z(x, t) = ψ J (x, t, z)′ĉ.

Note that the estimand for πDR in Proposition 2 is essentially a ratio of average, i.e.,

πDR =

∫ 1

0

∫
X 1m(x, v)sgn(1q(x, v)) fX (x)dxdv∫ 1

0

∫
X 1q(x, v)sgn(1q(x, v)) fX (x)dxdv

,

where the sign sgn(1q(x, v)) = 1(1q(x, v) > 0) − 1(1q(x, v) < 0). Correspondingly, our es-

timator π̂DR =
∑
v∈V (l)

∑
i 1m̂(X i , v)sgn(1q̂(X i , v))/

∑
v∈V (l)

∑
i 1q̂(X i , v)sgn(1q̂(X i , v)).

π̂DR
does not involve trimming, which would drop small |1q̂(X i , v)|. Our asymptotic theory

characterizes the first-order influence of the Step 1 quantile regression in determining the sign of

1q(X i , v) from the weights. This is different from the regression discontinuity design in Dong,

Lee, and Guo (2023), where the estimation is fully nonparametric locally around the cutoff and

uses a trimming parameter to control the influence to be of smaller order.

20



4.2 Inference

This section presents inference results for π(v) and πDR . Inference results for the other parameters

π(x, v) and alternative DR estimands defined over S+ = {(x, v) ∈ S: 1q(x, v) > 0} or S− =

{(x, v) ∈ S: 1q(x, v) < 0} are presented in Section S.4 and Section S.5, respectively, in the

Appendix.

We derive the asymptotic theory based on the literature of quantile regression and sieve esti-

mation. The main complication here is that we need to account for the variation from the Step

1 quantile regression and Step 2 sieve estimation, as well as the sign function. Let a(v) =

(a0(v), a′1(v), a2(v), a′3(v))
′ be the quantile coefficients in Step 1. For the quantile regression

estimator â(v), we apply the results of Angrist, Chernozhukov, and Fernández-Val (2006). They

show that â(v) converges uniformly over v in a closed subset of (0, 1) to a zero mean Gaussian

process indexed by v. For the partially linear estimation in Step 2, we apply the results of Chen

and Christensen (2018). They establish uniform inference for nonlinear functionals of nonpara-

metric IV regression. We apply their results for a special case of exogenous regressors and linear

functionals. Our assumptions for asymptotics collect the assumptions in these two papers. To save

space, we list these assumptions in Section S.3 in the Appendix.

We show in Theorem 3 below that under Assumptions A1, A2, and A3, the influence function

of π̂(v) is given by Ri (v)/B(v) = (R1i (v) + R2i (v) + R3i (v))/B(v), where R1i (v) captures the

impact of Step 1, R2i (v) captures the impact of Step 2, R3i (v) is the influence function for the

sample analogue estimator of π̂(v) (without accounting for the step 1 and step 2 estimation errors)

in Step 3, and B(v) is from the normalization in the weighting function. The exact formulas of

Rki (v), k = 1, 2, 3, are given in (S.11) in the Appendix. Let σ 2
n(v) = E

[
Ri (v)

2
]
/B(v)2, which is

the sieve variance of
√

nπ̂(v). Further let σ̂ 2(v) be a uniformly consistent estimator of σ 2
n(v) in the

sense that supv∈V |σ n(v)/σ̂ (v) − 1| = op(1) for a closed set V = {v Pr(|1q(X, v)| > 0) > 0}.

For example, σ̂ 2(v) can be estimated by the sample analogue plug-in estimator, i.e., σ̂ 2(v) =

n−1
∑n

i=1 R̂i (v)
2/B̂(v)2, where R̂i (v) and B̂(v) are uniformly consistent estimators of Ri (v) and

B(v), respectively. We give the estimation detail of σ̂ 2(v) in Section S.7 in the Appendix.
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Theorem 3. Let Assumptions A1, A2, and A3 hold. Then uniformly for v ∈ V ,
√

n
(
π̂(v) −

π(v)
)
/σ̂ (v) = n−1/2

∑n
i=1 Ri (v)/(B(v)σ n(v))+ op(1)

d
−→ N (0, 1).

A 100(1−α)% confidence interval for π(v) can be constructed as
[
π̂(v)−z∗1−ασ̂ (v)/

√
n, π̂(v)+

z∗1−ασ̂ (v)/
√

n
]
, where z∗1−α = 8

−1(1 − α/2) is the 1 − α/2 quantile of the standard normal dis-

tribution, based on the asymptotically normal approximation.

Similarly, Theorem 4 shows that under Assumptions A1, A2, and A3, the influence function

of π̂DR
is given by Ri/B = (R1i + R2i + R3i )/B. The exact formulas of Rki , k = 1, 2, 3, are

given in (S.10) in the Appendix. Let σ 2
n = E

[
R2

i

]
/B2, which is the sieve variance of

√
nπ̂DR

.

Further let σ̂ 2
be a consistent estimator of σ 2

n such that |σ n/σ̂ − 1| = op(1).

Theorem 4. Let Assumptions A1, A2, and A3 hold. Let
√

nl−1 = o(1). Then
√

n
(
π̂DR −

πDR
)
/σ̂ = n−1/2

∑n
i=1 Ri/(Bσ n)+ op(1)

d
−→ N (0, 1).

Based on Theorem 4, a 100(1−α)% confidence interval for πDR can be constructed as
[
π̂DR−

z∗1−ασ̂ /
√

n, π̂DR + z∗1−ασ̂ /
√

n
]
.

Our semi-parametric estimation relies on certain functional form assumptions. The causal in-

terpretation of the estimated parameters depends on the validity of these assumptions. In theory,

fully nonparametric estimation and inference are feasible. For instance, in Step 1, the nonpara-

metric QR series method from Belloni et al. (2009) could be employed, and in Step 2, the fully

nonparametric mean regression approach from Chen and Christensen (2018) could be applied. Our

asymptotic theory for π̂(v) and π̂ can be extended to these corresponding nonparametric estima-

tors, albeit at the cost of more complex notation and stronger regularity conditions.

When weak monotonicity (along with other identifying assumptions) holds, πDR = τWald_X .

This implies that if the assumed semi-parametric functional forms are correct, or if both estimators

are obtained nonparametrically, they will converge to the same causal parameter. Consequently,

their estimates should be similar in large samples. Substantial differences between the two es-

timates may indicate a violation of monotonicity, assuming the other identifying assumptions

hold. Notably, when monotonicity does not hold, the usual Wald estimator becomes inconsistent,

whereas our estimator remains consistent for a well-defined causal parameter.
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5 Extensions to a Multi-valued IV or Multiple Discrete IVs

In this section, we briefly explore extensions of identification, estimation, and inference to sce-

narios involving a multi-valued instrumental variable (IV) or a vector of discrete IVs.8 We begin

by examining the basic setup without covariates, followed by a discussion of the more general

framework that includes covariates.

Assume T = g (T, ε) and T = h (Z ,U ) as in Section 2. Denote the support of Z as Z =

{z0, z1, ..., zK }. So e.g., if Z = (Z1, Z2), where Z1 ∈ {0, 1} and Z2 ∈ {0, 1}, then one can let

z0 = (0, 0), z1 = (0, 1), z2 = (1, 0), and z3 = (1, 1). Let Uk = FTzk

(
Tzk

)
be the rank of

the potential treatment Tzk
if Z is exogenously set to be zk . The observed rank can be written as

U =
∑K

k=1 1 (Z = zk)Uk . Let Tzk
(u) be the u quantile of the potential treatment Tzk

. Further

let rk = Pr (Z = zk), p (Z) = E [T |Z ], pk = E [T |Z = zk], and p = E [T ]. Without loss of

generality, assume that the K + 1 values of Z is ordered such that pk ≥ pk−1 for k = 1, ..., K ,

which may involve rearranging and is verifiable from the data.

We continue to use the same sets of assumptions when we consider either the basic setup

without covariates or the general setup with covariates, except that the relevant assumptions need

to be modified to accommodate the greater support of Z , which is Z = {z0, z1, ..., zK }. For

example, Assumption 1 now requires that Tzk
(u) is strictly monotonic in u for any zk ∈ Z , and that

Uk ∼ Uni f (0, 1) for k = 0, ..., K , and Assumption 2 independence now requires Z ⊥ (Uk, ε)

for k = 0, ..., K . The same holds true for Assumptions C1 and C2. Further Assumptions 3, 4,

and 5, and similarly Assumptions C3, C4 and C5 need to hold for each pair of IV values zk and

zk−1 for k = 1, ..., K . That is, Assumption 3 monotonicity now states that Pr
(
Tzk
≥ Tzk−1

)
= 1,

k = 1, ..., K , while Assumption 4 now requires that Tzk
(u) 6= Tzk−1

(u) for k = 1, ..., K and a set

of u ∈ (0, 1) with a straight positive measure. Assumption 5 now requires that Uk |ε ∼ Uk−1|ε,

k = 1, ..., K . The same holds true for Assumptions C3, C4 and C5. In addition, Assumption C6

8Mogstad et al. (2021) show that the LATE monotonicity may not be plausible with multiple IVs for a binary treat-

ment. This conclusion is generalizable to a continuous treatment. While they seek to provide a causal interpretation

for the usual two stage least square (2SLS) estimand under a weaker partial monotonicity condition (i.e., monotonicity

holds with one IV while holding other IVs fixed), we provide an estimand that is robust to the failure of the LATE

monotonicity assumption.
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common support now requires Pr (Z = zk |X = x) ∈ (0, 1) for k = 0, ..., K and any x ∈ X .

Define the following estimand for each pair of the IV values {zk−1, zk}, k = 1, ...K ,

τ k(u):=
E [Y |Z = zk,U = u]− E

[
Y |Z = zk−1,U = u

]
E [T |Z = zk,U = u]− E

[
T |Z = zk−1,U = u

]
if the denominator is not zero; otherwise, define τ k(u):=0. Like before, T and U follow a one-to-

one mapping given Z = zk , so conditioning on U = u is the same as conditioning on T = Tzk
(u).

Further given Z ⊥ (Uk, ε), we have Tzk
(u) = qk(u), where qk(u) = F−1

T |Z (u|zk) is the conditional

u quantile of T given Z = zk . Then τ k(u) can be re-written as

τ k(u) =
E
[
Y |Z = zk, T = qk(u)

]
− E

[
Y |Z = zk−1, T = qk−1(u)

]
qk(u)− qk−1(u)

.

Following Theorem 1, τ k(u) identifies an average treatment effect at the u quantile of treatment

for units responding to the IV change from zk−1 to zk .

Analogous to Proposition 1, define a DR estimand for each pair of IV values. In particular, let

1qk(u) = qk(u)− qk−1(u), k = 1, ..., K . The corresponding DR estimand is given by

τ DR
k :=

∫ 1

0

τ k(u)wk (u) du,

where wk(u) =
|1qk(u)|∫ 1

0 |1qk(u)|du
. τ DR

k identifies a weighted average of the average treatment effect for

all units that respond to the IV change from zk−1 to zk , under either monotonicity or rank similarity.

Construct an aggregated DR estimand as

τ DR,K :=

K∑
k=1

λkτ
DR
k , (16)

where λk :=
(pk−pk−1)

∑K
l=k r

l
(pl−p)∑K

k=1(pk−pk−1)
∑K

l=k r
l
(pl−p)

. The weights λk follow from Theorem 2 of Imbens and

Angrist (1994).

Note that λk ≥ 0 and
∑K

k=1 λk = 1, because the IV values are ordered such that pk ≥ pk−1.
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Therefore, τ DR,K is a convex combination of τ DR
k , k = 1, ..., K , and hence has the DR prop-

erty as well.9 In particular, when monotonicity holds, τ DR
k reduces to the LATE Wald ratio

τWald
k :=

E[Y |Z=zk ]−E[Y |Z=zk−1]
E[T |Z=zk ]−E[T |Z=zk−1]

, and hence τ DR,K =
∑K

k=1 λkτ
Wald
k . Further by Theorem 2 of

Imbens and Angrist (1994),
∑K

k=1 λkτ
Wald
k = Cov(Y,p(Z))

Cov(T,p(Z)) . Notice that τWald
k in this case identifies

a weighted average of LATEs for Z ∈ {zk−1, zk} under monotonicity. Therefore, if monotonicity

holds, τ DR,K identifies a doubly weighted average of LATEs for different compliers, averaging

over different compliers for a given pair of IV values and over different pairs of IV values; oth-

erwise, when rank similarity holds, τ DR,K identifies a doubly weighted average of the average

treatment effects at different treatment quantiles - the first averaging is over different treatment

quantiles for a given pair of IV values and the second is over different pairs of IV values. Either

way, τ DR,K identifies a doubly weighted average of the average treatment effects for all the units

responding to IV changes.

Now consider the general setup where the IV independence and treatment rank similarity are

valid only conditional on covariates. One can incorporate covariates as before for each pair of IV

values. In particular for k = 1, ..., K , define the following estimand

π k(x, v):=
E [Y |Z = zk, X = x, V = v]− E

[
Y |Z = zk−1, X = x, V = v

]
E [T |Z = zk, X = x, V = v]− E

[
T |Z = zk−1, X = x, V = v

]
when the denominator is not zero; define π k(x, v):=0, otherwise. Following Theorem 2, π k (x, v)

identifies an average treatment effect at the conditional (on X = x) v quantile of treatment.

Further analogous to Proposition 2, define the DR estimand for each pair of IV values, zk−1

and zk , as

πDR
k :=

∫∫
(0,1)×X

π k(x, v)wk(x, v)dvdx, (17)

wherewk(x, v) =
|1qk(x,v)| f (x)∫∫

(0,1)×X |1qk(x,v)| f (x)dvdx
, and1qk (x, v) = qk (x, v)−qk−1 (x, v), and qk (x, v)

= F−1
T |Z ,X (v|zk, x) is the conditional v quantile of T given Z = zk and X = x .

9In theory, any convex combination of τ DR
zk ,zk−1

, k = 1, ..., K , would have the DR property. Here our goal is to

incorporate the 2SLS or LATE-type estimand given by
Cov(Y,p(Z))
Cov(T,p(Z)) as a special case, which leads to the particular

choice of λk .
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Then define the aggregated DR estimand as

πDR,K :=

K∑
k=1

λkπ
DR
k ,

where λk is defined as in (16). When conditional monotonicity holds, πDR,K identifies a doubly

weighted average of LATEs for compliers and definers; otherwise when rank similarity holds,

πDR,K identifies a doubly weighted average of the average treatment effects at different conditional

treatment quantiles. Note that the identified parameter in this case is still the unconditional doubly

weighted average, even though the instrument validity holds only conditional on covariates.

One can estimate πDR,K by π̂DR,K =
∑K

k=1 λ̂kπ̂
DR
k given an i.i.d. sample {(Yi , Ti , X i , Zi )}ni=1,

where π̂DR
k is an estimator of πDR

k and λ̂k is an estimator of λk . π̂DR
k can be obtained similar to

π̂DR proposed for a binary IV. λ̂k can be estimated by a simple sample analogue plug-in estimator.

Let Dk = 1(Z = zk). One can estimate pk = E [T |Z = zk] by p̂k =
∑n

i=1 Ti Dk
i /
∑n

i=1 Dk
i

for k = 0, 1, ..., K , and estimate p by p̂ = n−1
∑n

i=1 Ti . One can further estimate rk by r̂k =

n−1
∑n

i=1 Dk
i for k = 1, ..., K . Then the plug-in estimator for λk is λ̂k =

( p̂k− p̂k−1)
∑K

l=k r̂
l

(
p̂l− p̂

)∑K
k=1( p̂k− p̂k−1)

∑K
l=k r̂

l

(
p̂l− p̂

) ,
k = 1, ..., K

We provide the influence function for π̂DR,K
, denoted as RK i , in eq. (S.15) in the Appendix.

The influence function given in Theorem 4 is now indexed by k, i.e., Ri/B defined in (S.10) is now

Rk
i /Bk . Together with the influence function of λ̂k , we can derive the influence function of π̂DR,K

.

Define the sieve variance of
√

nπ̂DR,K
as σ 2

K n = E
[
RK i

2
]
. Let σ̂ 2

K be a consistent estimator of

σ 2
K n , such that |σ K n/σ̂ K − 1| = op(1). We have the following asymptotics result for π̂DR,K

.

Theorem 5. Let the conditions in Theorem 4 hold. Then
√

n
(
π̂DR,K − πDR,K

)
/σ̂ K

= n−1/2
∑n

i=1 RK i/σ K n + op(1)
d
−→ N (0, 1).
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6 Empirical Application

In this section, we apply the proposed estimators to estimate the effects of night sleep on physical

and psychological well-being, using data from a recent field experiment (Bessone et al., 2021).

The experiment involved 452 adults in Chennai, India, and spanned a 28-day period. During

the first eight days, baseline data were collected. Participants were then randomized into three

groups: a control group, an Encouragement group, provided with (a) devices to improve their

home sleep environments and (b) information and verbal encouragement to increase night sleep,

and an Encouragement + Incentives group, provided with (a) and (b), as well as additional financial

incentives to increase night sleep. These groups were further cross-randomized with a nap assign-

ment, offering participants a daily half-hour afternoon nap at their workplace. This resulted in six

experimental groups: control, encouragement, encouragement + incentives, naps, encouragement

and naps, and encouragement + incentives and naps. Bessone et al. (2021) primarily focused

on the reduced-form impacts of these assignments on sleep duration, work outcomes, well-being,

cognitive measures, and economic preferences.

For our analysis, we use data from the first three groups (control, encouragement, and encour-

agement + incentives) without nap assignments. We focus on the well-being index as the outcome

variable and night sleep (in hours) as the treatment variable for instrumental variable (IV) analysis.

The well-being index is a composite measure of physical and psychological well-being.10 The

well-being index is standardized using the baseline control group’s mean and standard deviation,

following Bessone et al. (2021). Hence, its unit of measurement is standard deviations. Night

sleep is our focus for two reasons: (1) night sleep is the primary form of sleep for most individuals,

and (2) the control group reports zero hours of nap, and our treatment variable must be absolutely

continuous. As in Bessone et al. (2021), our analysis controls for baseline measures of well-being

and night sleep. In some analyses, we also control for participants’ gender and age in quartiles.

Our sample comprises 226 observations: 77 from the control group, 75 from the Encourage-

10The well-being index is constructed as a weighted average of standardized measures of psychological and physical

well-being. For details, see Bessone et al. (2021).
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Table 1: Sample summary statistics

(1) (2) (3) (2)− (1) (3)− (1)
Baseline well-being 0.00 (0.46) 0.03 (0.40) 0.09 (0.41) 0.03 (0.07) 0.19 (0.07)

Baseline night sleep 5.51 (0.90) 5.60 (0.84) 5.65 (0.79) 0.09 (0.14) 0.14 (0.14)

Age in 1st quartile 0.23 (0.43) 0.25 (0.44) 0.31 (0.47) 0.02 (0.07) 0.08 (0.07)

Age in 2nd quartile 0.27 (0.45) 0.27 (0.45) 0.20 (0.40) -0.01 (0.07) -0.07 (0.07)

Age in 3rd quartile 0.23 (0.43) 0.27 (0.45) 0.34 (0.48) 0.03 (0.07) 0.10 (0.07)

Female 0.68 (0.47) 0.64 (0.48) 0.64 (0.48) -0.04 (0.08) -0.04 (0.08)

Night sleep 5.62 (0.80) 5.99 (0.85) 6.22 (0.95) 0.37 (0.14) 0.60 (0.14)

Well-being -0.00 (0.41) 0.14 (0.37) 0.10 (0.37) 0.15 (0.06) 0.10 (0.06)

Participants 77 75 74

Note: Columns 1 - 3 report sample means and standard deviations (in parentheses) of the

three groups: (1) Control, (2) Encouragement, (3) Encouragement + Incentives ; Columns 4

and 5 report the mean differences and their standard errors.

ment group, and 74 from the Encouragement + Incentives group. Summary statistics are presented

in Table 1, which show that the three experimental groups are well-balanced across all covariates.

Consistent with Bessone et al. (2021), assignment to either the Encouragement or Encourage-

ment + Incentives group significantly increases average sleep duration at night, with the Encour-

agement + Incentives group showing a larger increase. Interestingly, simple mean comparisons

reveal that assignment to the Encouragement group significantly improves well-being (by 0.15

standard deviations). In contrast, assignment to the Encouragement + Incentives group does not

have a significant impact on well-being, despite leading to a larger average increase in night sleep

(0.60 vs. 0.37 hours).

To examine the causal effects of night sleep on well-being, we define two binary IVs: Z1 is

an indicator for assignment to the Encouragement group, and Z2 be an indicator for assignment

to the Encouragement + Incentives group. We investigate the distributional changes in night sleep

using each IV and assess the effects of night sleep on well-being across different quantiles of the

sleep distribution. We implement the estimator π̂(v) as decribed in Section 4.1, which is based on

eq. (14). Bootstrapped standard errors are calculated using 1,000 replications for computational

efficiency and convenience.

Results using Z1 as an IV are presented in Table 2, while results using Z2 are in Table 3. When

Z1 is used, the analysis compares the Encouragement group to the control group. When Z2 is

used, it compares the Encouragement + Incentives group to the control group. Importantly, these
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IV analyses condition on the other IV being zero, which is important as discussed in Mogstad et

al. (2021).

Table 2 Effects of night sleep on well-being at different conditional quan-

tiles of sleep (IV: Encouragement vs. Control)

Quantile Sleep (hrs),

control

Avg. first-stage sleep

change

Sleep effect

0.1 4.53 0.307 (0.088)*** 0.276 (0.175)

0.15 4.83 0.295 (0.081)*** 0.311 (0.184)*

0.2 5.01 0.226 (0.079)*** 0.135 (0.182)

0.25 5.19 0.261 (0.082)*** 0.423 (0.184)**

0.3 5.34 0.285 (0.079)*** 0.402 (0.188)**

0.35 5.41 0.309 (0.081)*** 0.314 (0.163)*

0.4 5.53 0.280 (0.079)*** 0.318 (0.158)**

0.45 5.57 0.260 (0.080)*** 0.321 (0.169)*

0.5 5.62 0.318 (0.079)*** 0.286 (0.179)

0.55 5.76 0.400 (0.083)*** 0.319 (0.179)*

0.6 5.86 0.418 (0.080)*** 0.270 (0.193)

0.65 5.96 0.330 (0.083)*** 0.355 (0.227)

0.7 6.04 0.363 (0.087)*** 0.286 (0.227)

0.75 6.23 0.347 (0.083)*** 0.225 (0.224

0.8 6.33 0.358 (0.095)*** 0.168 (0.229

0.85 6.47 0.340 (0.124)*** 0.106 (0.210)

0.9 6.63 0.561 (0.140)*** 0.073 (0.193)

Note: This table reports (in column 2) the quantiles of night sleep in hours

for the control group, (in column 2) the first-stage quantile changes at dif-

ferent conditional quartiles of night sleep and (in Column 3) the weighted

average of average treatment effects at different conditional quantiles of

night sleep (estimated based on eq. (14)). Covariates conditioned on are

baseline well-being, baseline night sleep, participants’ gender and age in

four quartiles. The binary IV is Z1, the Encouragement group vs. Con-

trol. Bootstrapped standard errors (based on 1,000 replications) are in the

parenthesis. *** Significant at 1%; ** Significant at 5%; * Significant at

10%.

Estimates in Table 2 show significant increases in night sleep at all quantiles, ranging from 0.23

to 0.56 hours. However, significant positive effects of night sleep on well-being are observed only

at lower quantiles, with the effects diminishing at higher quantiles.

Table 3 similarly shows significant increases in night sleep across all quantiles, with larger

increases compared to Table 2. However, these additional increases in night sleep do not translate

into improved well-being. The estimated effects on well-being are smaller at nearly all quantiles,

statistically insignificant, and decrease with increasing quantiles, eventually becoming negative.

These findings align with the notion of diminishing returns to night sleep.
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Table 3 Effects of per hour night sleep on well-being at different levels of

sleep (IV: Encouragement + Incentives vs. Control)

Quantile Sleep (hrs),

control

Average first-stage

sleep change

Sleep effect

0.1 4.53 0.405 (0.097)*** 0.099 (0.150)

0.15 4.83 0.445 (0.100)*** 0.107 (0.164)

0.2 5.01 0.337 (0.099)*** 0.162 (0.162)

0.25 5.19 0.347 (0.100)*** 0.157 (0.161)

0.3 5.34 0.364 (0.096)*** 0.135 (0.152)

0.35 5.41 0.505 (0.097)*** 0.105 (0.146)

0.4 5.53 0.523 (0.101)*** 0.101 (0.148)

0.45 5.57 0.476 (0.102)*** 0.101 (0.150)

0.5 5.62 0.512 (0.094)*** 0.100 (0.150)

0.55 5.76 0.654 (0.097)*** 0.095 (0.150)

0.6 5.86 0.660 (0.097)*** 0.068 (0.146)

0.65 5.96 0.581 (0.098)*** 0.055 (0.152)

0.7 6.04 0.586 (0.093)*** 0.062 (0.144)

0.75 6.23 0.588 (0.096)*** 0.049 (0.139)

0.8 6.33 0.636 (0.105)*** 0.037 (0.140)

0.85 6.47 0.601 (0.100)*** 0.033 (0.145)

0.9 6.63 0.586 (0.104)*** -0.011 (0.142)

Note: This table reports (in column 2) the quantiles of night sleep in hours

for the control group, (in column 2) the first-stage quantile changes at dif-

ferent conditional quartiles of night sleep and (in Column 3) the weighted

average of average treatment effects at different conditional quantiles of

night sleep (estimated based on eq. (14)). Covariates conditioned on are

baseline well-being, baseline night sleep, participants’ gender and age in

four quartiles. The binary IV is Z2, the Encouragement + Incentives group

vs. Control. Bootstrapped standard errors (based on 1,000 replications) are

in the parenthesis. *** Significant at 1%; ** Significant at 5%; * Significant

at 10%.
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The results in Tables 2 and 3 rely on the assumption of rank similarity, conditional on baseline

sleep, baseline well-being, gender, and age. This assumption holds if additional individual-specific

determinants of sleep, such as biological preferences or circadian rhythms, act as fixed effects.

However, this assumption is untestable with the available data, as existing tests (e.g., Dong and

Shen, 2016; Frandsen and Lefgren, 2016) require external "rank shifters" not included as covari-

ates.

We next apply our doubly robust (DR) approach to estimate the weighted average effects among

all responding units. Specifically, we estimate the DR estimator π̂DR using either Z1 or Z2 as a

single IV or both IVs in a multi-valued IV analysis. In the first analysis, we compare the Encour-

agement group to the control group (Z = Z1). In the second, we compare the Encouragement +

Incentives group to the control group (Z = Z2). In the third, we include all three groups, defining

the IV as Z = (Z1, Z2) with Z ∈ {z0, z1, z2}, where z0:=(0, 0), z1:=(1, 0) and z2:=(0, 1).

Table 4: Effects of per hour night sleep on well-being, using a single IV

2SLS Wald DR

(I) (II) (I) (II) (I) (II)

IV: Encouragement vs. Control

0.427 0.408 0.426 0.398 0.391 0.231

(0.195)** (0.187)* (0.222)* (0.170)** (0.209)* (0.131)*

IV: Encouragement + Incentives vs. Control

0.130 0.111 0.130 0.106 0.123 0.075

(0.109) (0.107) (0.109) (0.104) (0.128) (0.116)

Note: 2SLS - linear IV/2SLS estimate; Wald - estimates based on eq. (14)

where the conditional mean functions are assumed to be linear in covariates

and fully interacted with the binary IV (see details in the main text); DR -

doubly robust IV estimates based on the estimation procedure described in

Section 4. Columns (I) control for baseline well-being and baseline night

sleep; Columns (II) additionally control for participants’ gender and age

in four quartiles. In the top panel, the binary IV used is Z1, the indicator

for being assigned to the Encouragement group vs. Control; in the bottom

panel, the binary IV used is Z2, the indicator for being assigned to the En-

couragement + Incentives group vs. Control. Bootstrapped standard errors

(based on 1,000 replications) are in the parentheses. ** Significant at 5%;

* Significant at 10%.

Table 4 presents DR estimates, linear 2SLS estimates, and semiparametric Wald estimates

(based on τWald_X in eq. (15)) using a single IV (Z1 or Z2). For the DR estimator, we use a

first-order polynomial for the power series of T , given the limited sample size. For the Wald
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estimator, conditional means are assumed to be linear in covariates, fully interacted with the binary

IV. The Wald estimator relies on weaker conditional monotonicity assumptions, whereas the 2SLS

estimator requires unconditional monotonicity.11 In addition, the linear 2SLS estimator requires

homogeneity of both the instrument and the treatment effects.

Results in Table 4 indicate that the DR estimates align relatively closely with the Wald and

2SLS estimates. When Z1 is used, significant positive effects of increased night sleep on well-

being are observed, ranging from 0.2 to 0.4 standard deviations. In contrast, the estimates using

Z2 indicate smaller positive effects (around 0.1 standard deviations), which are not statistically

significant. The consistency between DR and 2SLS point estimates enhances the credibility of the

results.

Table 5: Effects of per hour night sleep on well-being, using two Ivs

(I) (II) (I) (II)

2SLS 0.151 0.144

(0.107) (0.104)

Wald 0.181 0.154 DR 0.167 0.099

(0.217) (0.157) (0.180) (0.113)

τWald_X
1 0.440 0.388 πDR

1 0.400 0.232

(0.232) (0.146)*** (0.198)** (0.136)*

τWald_X
2 -0.331 -0.309 πDR

2 -0.294 -0.166

(0.345) (0.211) (0.189) (0.125)

Note: All estimates are based on the full sample with 226 observations.

Columns (I) control for baseline well-being and baseline night sleep;

Columns (II) additionally control for participants’ gender and age in four

quartiles. πDR
1 and τWald_X

1 compare the Encouragement group with the

Control group; πDR
2 and τWald_X

2 compare the Encouragement + Incentives

group with the Encouragement group. DR and Wald estimates are weighted

averages of πDR
1 and πDR

2 or τWald_X
1 and τWald_X

2 , respectively, where the

weights λ1 = 0.664 (std. err. = 0.225) and λ2 = 0.336 (std. err.= 0.225).

*** Significant at 1%; ** Significant at 5%; * Significant 10%.

Table 5 reports estimates using Z1 and Z2 jointly in a multi-valued IV framework discussed

in Section 5. The DR estimates are based on πDR,2:=
∑2

k=1 λkπ
DR
k , where λk is defined in

11The unconditional monotonicity assumption requires: (a) Everyone increases their night sleep when assigned to

the Encouragement group instead of the control group. (b) Everyone increases their night sleep when assigned to

the Encouragement + Incentives group instead of the control group. For the multi-valued IV analysis, an additional

assumption is that, conditional on covariates, individuals increase their night sleep further when assigned to the En-

couragement + Incentives group instead of the Encouragement group. While these assumptions are plausible, they are

not directly testable due to small sample sizes and the lack of suitable stochastic dominance tests, particularly when

conditioning on covariates. Thus, the doubly robust approach is particularly useful in this context.

32



eq. (16) and πDR
k in eq. (17). Similar to the single IV analysis, we also estimate the linear

2SLS estimator and the multi-valued IV extension of the Wald estimator. The latter is based on

τWald_X,K :=
∑K

k=1 λkτ
Wald_X
k for K = 2, with τWald_X

k defined analogously to τWald_X for each

pair of IV values, zk−1 and zk for k = 1, 2.

The DR and Wald estimates in this case represent weighted averages of the effects for each

pair of IV values: πDR
1 and τWald_X

1 capture the variation between z1 and z0 (Encouragement vs.

control); πDR
2 and τWald_X

2 capture the variation between z2 and z1 (Encouragement + Incentives

vs. Encouragement). The overall estimates using both IVs are small, positive, and statistically

insignificant. Detailed subgroup analyses reveal positive effects for πDR
1 and τWald_X

1 , while es-

timates of πDR
2 and τWald_X

2 are consistently negative, though not statistically significant. These

findings align with the single IV results, suggesting that the additional sleep induced by financial

incentives do not improve well-being.

The above results provide important insights. Individuals with lower baseline sleep levels who

moderately increased sleep demonstrated improved mental and physical well-being. In contrast,

individuals with higher baseline sleep levels or those incentivized to further increase their sleep

did not experience similar benefits.

Our analysis differs from Bessone et al. (2021, Table A.XVII), which uses different IVs jointly

in a single regression. By analyzing each IV separately and providing a detailed breakdown of the

joint IV estimates, we uncover more nuanced findings about the differential impacts of increased

nigh sleep. These results underscore the complexity of well-being outcomes and the need for

tailored sleep-related policies.

7 Conclusion

Many empirical applications involve a continuous treatment and a binary or discrete IV. The stan-

dard approach, 2SLS, relies on a mean change in the treatment for identifying causal effects. This

paper extends the framework by exploring distributional changes in the treatment induced by bi-
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nary or discrete IVs to identify treatment effects.

We demonstrate that distributional changes in the treatment variable can identify average treat-

ment effects at specific treatment quantiles and weighted averages of these quantile-specific effects.

This identification relies on rank restrictions in the first stage, particularly treatment rank invari-

ance or treatment rank similarity. Furthermore, we develop a novel doubly robust (DR) estimand

that identifies weighted average effects for all individuals affected by IV changes under either the

rank restriction or the standard LATE-type monotonicity assumption.

Building on these nonparametric identification results, we propose semiparametric estimators

for treatment effects at different quantiles, capturing heterogeneity across treatment levels. We

also introduce a DR estimator for the weighted average treatment effect for all the units responsive

to IV changes, ensuring robust identification even when the mean treatment change is zero or

when monotonicity does not hold. We establish consistency and asymptotic normality for all the

proposed estimators. While our primary focus is on binary IVs, we extend all of the identification,

estimation and asymptotic results to cases involving multi-valued IVs or vectors of discrete IVs,

with or without covariates.

Our estimators complement standard 2SLS in several key ways. They are particularly useful

when 2SLS is either insufficient (e.g., when exploring treatment effect heterogeneity across differ-

ent treatment levels) or invalid (e.g., when the mean treatment change is zero or when monotonicity

does not hold). In such scenarios, the rank similarity assumption becomes crucial. Our frame-

work’s generalization to include covariates is especially promising, as conditioning on relevant

covariates improves the plausibility of the rank restriction by allowing the first-stage disturbance

to be treated as a scalar.

To illustrate the practical utility of our methods, we apply them to evaluate the impact of night-

time sleep on well-being. Our empirical analysis reveals interesting treatment effect heterogeneity

in treatment intensity. Furthermore, our DR estimator yields results consistent with traditional

2SLS estimates, thereby enhancing the credibility of the latter.

Future research could extend this framework further by incorporating high-dimensional co-
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variates and leveraging machine learning techniques for estimation, building on our identification

results. Such advancements could enhance the flexibility and applicability of our methods in mod-

ern empirical settings.
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Online Supplementary Appendix for

Doubly Robust Identification of Causal Effects of a Continuous

Treatment with Discrete Instruments

Yingying Dong and Ying-Ying Lee

In this supplementary appendix: Section S.1 provides proofs for the identification results pre-

sented in Sections 2 and 3. Section S.2 presents the DR estimands defined over subsets of treat-

ment quantiles. Section S.3 presents the detailed assumptions for inference. Section S.4 presents

the inference theory for π(x, v). Section S.5 contains the proofs of the inference results presented

in Section 4.2. Section S.6 discusses nonparametric estimation and inference without covariates.

Section S.7 details the computation of standard errors.

S.1 Proofs: Identification

Proof of Lemma 1: By definition,

τWald =
E
[
g (T1, ε) |Z = 1

]
− E

[
g (T0, ε) |Z = 0

]
E [T1|Z = 1]− E [T0|Z = 0]

=
E
[
g (T1, ε)− g (T0, ε)

]
E [T1 − T0]

=
E
[
{g (T1, ε)− g (T0, ε)} · 1 (T1 − T0 > 0)

]
E [{T1 − T0} · 1 (T1 − T0 > 0)]

=

∫∫
Tc

∫
{g (t1, e)− g (t0, e)} Fε|T0,T1

(de|t0, t1) FT0,T1
(dt0, dt1)∫∫

Tc
{t1 − t0} FT0,T1

(dt0, dt1)

=

∫∫
Tc

wt0,t1

{∫
g (t1, e)− g (t0, e)

t1 − t0
Fε|T0,T1

(de|t0, t1)

}
FT0,T1

(dt0, dt1)

=

∫∫
Tc

wt0,t1E
[

Yt1 − Yt0

t1 − t0
|T0 = t0, T1 = t1

]
FT0,T1

(dt0, dt1)

=

∫∫
Tc

wt0,t1 L AT E(t0, t1)FT0,T1
(dt0, dt1) ,

Yingying Dong and Ying-Ying Lee, Department of Economics, University of California Irvine, yyd@uci.edu and

yingying.lee@uci.edu.
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where the first equality follows from the models for Y and T without covariates as specified in eq.s

(2) and (4), respectively, the second equality follows from Assumption 2, the third equality follows

from Assumption 3, the fourth equality follows from the law of iterated expectations, and the fifth

to the last equalities follow from rearranging and our notation wt0,t1 =
t1−t0∫∫

Tc
(t1−t0)FT0,T1

(dt0,dt1)
and

Tc = {(t0, t1) ∈ T0 × T1 : t1 − t0 > 0}. Under monotonicity,wt0,t1 ≥ 0 and
∫∫
Tc
wt0,t1 FT0,T1

(dt0, dt1)

= 1, so τWald identifies a weighted average of L AT E(t0, t1):=E
[

Yt1
−Yt0

t1−t0
|T0 = t0, T1 = t1

]
for

(t0, t1) ∈ Tc.

Further, when g (T, ε) is continuously differentiable in T ,

τWald =
E
[∫ T1

T0

∂g(t,ε)
∂t

dt

]
E
[∫ T1

T0
1dt

]
=

E
[∫
T
∂g(t,ε)
∂t

1 (T0 ≤ t ≤ T1) dt

]
E
[∫

1 (T0 ≤ t ≤ T1) dt
]

=

∫
T E

[
∂g(t,ε)
∂t
|T0 ≤ t ≤ T1

]
Pr (T0 ≤ t ≤ T1) dt∫

Pr (T0 ≤ t ≤ T1) dt

=

∫
T
E
[
∂g (t, ε)

∂t

∣∣∣∣T0 ≤ t ≤ T1

]
w̃dt,

where w̃ = Pr(T0≤t≤T1)∫
T Pr(T0≤t≤T1)dt

, the first equality follows from Assumption 3 and differentiability of

g (T, ε) in T , the second to the last equalities follow from the law of iterated expectations and

interchanging the order of integration when standard regularity conditions hold.

Proof of Lemmas 2 and 3: Assumption 2 states Z ⊥ (Uz, ε), which implies Z ⊥ Uz|ε. That

is, U0|ε ∼ U0| (ε, Z = 0) and U1|ε ∼ U1| (ε, Z = 1). Further by Assumption 5, U0|ε ∼ U1|ε.

Together they imply U0| (ε, Z = 0) ∼ U1| (ε, Z = 1), i.e., U | (ε, Z = 1) ∼ U | (ε, Z = 0), so that

U ⊥ Z |ε. Further by Assumption 2, Z ⊥ ε. Therefore, Z ⊥ (U, ε), and hence Z ⊥ ε|U . It further

implies T ⊥ ε|U , since T = h (Z ,U ).

Replacing the above proof of Lemma 2 by conditioning on X in each step proves Lemma 3.
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Proof of Theorem 2: First, one can show Z ⊥ ε| (V, X) under Assumptions C2 and C5, analo-

gous to the derivation of Lemma 2. Specifically, Assumption C2 states Z ⊥ (Vz, ε) |X , which

implies Z ⊥ Vz| (X, ε), i.e., Vz| (X, ε, Z = z) ∼ Vz| (X, ε), and hence V | (X, ε, Z = z) ∼

Vz| (X, ε). In addition, Assumption C5 states V1| (X, ε) ∼ V0| (X, ε). Then, V | (X, ε, Z = 0) ∼

V | (X, ε, Z = 1), i.e., Z ⊥ V | (X, ε). Further by Assumption C2, Z ⊥ ε|X . Therefore, Z ⊥

(V, ε) |X , and hence Z ⊥ ε| (V, X).

Consider now the two terms in the numerator of π(x, v):

E [Y |Z = z, X = x, V = v] = E
[
G (Tz(x, v), x, ε) |Z = z, X = x, V = v

]
= E

[
G (Tz(x, v), x, ε) |X = x, V = v

]
= E

[
YTz(x,v)|X = x, V = v

]
=

∫
G (Tz(x, v), x, e) Fε|X,V (de|x, v) ,

where the first equality follows from our models (9) and (10), the second equality follows from

the condition Z ⊥ ε| (V, X) shown above, and the third equality follows from the definition of

potential outcomes.

Consider next the two terms in the denominator of π(x, v). By eq. (10),

E [T |Z = z, X = x, V = v] = Tz (x, v) .

Together they prove the theorem.

Proof of Lemma 4: First notice by definition,

1Y (x) = E [Y |Z = 1, X = x]− E [Y |Z = 0, X = x]

= E [G (T1, X, ε) |Z = 1, X = x]− E [G (T0, X, ε) |Z = 0, X = x]

= E [G (T1, X, ε) |X = x]− E [G (T0, X, ε) |X = x]

= E [G (T1, X, ε)− G (T0, X, ε) |X = x] . (S.1)
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where the first equality follows from our models of Y and T , equations (9) and (10), respectively,

while the second equality follows from Assumption C2. Similarly,

1T (x) = E [T |Z = 1, X = x]− E [T |Z = 0, X = x]

= E [T1|Z = 1, X = x]− E [T0|Z = 0, X = x]

= E [T1 − T0|X = x] . (S.2)

Consider first τWald_X
0 under strong monotonicity.

τWald_X
0

=

∫
X E [G (T1, X, ε)− G (T0, X, ε) |X = x] FX (dx)∫

X E [T1 − T0|X = x] FX (dx)

=
E [G (T1, X, ε)− G (T0, X, ε)]

E [T1 − T0]

=
E [{G (T1, X, ε)− G (T1, X, ε)} · 1 (T1 − T0 > 0)]

E [{T1 − T0} · 1 (T1 − T0 > 0)]

=

∫∫
Tc

∫∫
{G (t1, x, e)− G (t0, x, e)} FX,ε|T0,T1

(dx, de|t0, t1) FT0,T1
(dt0, dt1)∫∫

Tc
{t1 − t0} FT0,T1

(dt0, dt1)

=

∫∫
Tc

wt0,t1

{∫∫
G (t1, x, e)− G (t0, x, e)

t1 − t0
FX,ε|T0,T1

(dx, de|t0, t1)

}
FT0,T1

(dt0, dt1)

=

∫∫
Tc

wt0,t1E
[

Yt1 − Yt0

t1 − t0
|T0 = t0, T1 = t1

]
FT0,T1

(dt0, dt1)

=

∫∫
Tc

wt0,t1 L AT Ec(t0, t1)FT0,T1
(dt0, dt1) ,

where wt0,t1 = (t1 − t0) /
∫∫
Tc
(t1 − t0) FT0,T1

(dt0, dt1).

Consider now τWald_X under the weak conditional monotonicity. Note that conditional monotonic-

ity given in Assumption C3 means that the covariate set X can be partitioned into non-overlapping

subsets X+ and X− such that for X ∈ X+, T1 ≥ T0 a.s. and for X ∈ X− T1 ≤ T0 a.s. Fur-

ther, under Assumption C3, I+ (x) = 1 ⇐⇒ x ∈ X+ and I− (x) = 1 ⇐⇒ x ∈ X−. Let

Td = {(t0, t1) ∈ T0 × T1 : t1 < t0} be the set of all types of defiers. So Tc,d = Tc ∪ Td . Consider

4



the numerator of τWald_X first.

∫
X
I+ (x)1Y (x)− I− (x)1Y (x) fX (x)dx

=

∫
X+
1Y (x) fX (x)dx −

∫
X−
1Y (x) fX (x)dx

=

∫
X
{G (T1, X, ε)− G (T0, X, ε)} · 1 (T1 − T0 > 0) fX (x)dx

+

∫
X
{G (T0, X, ε)− G (T1, X, ε)} · 1 (T1 − T0 < 0) fX (x)dx

= E

 {G (T1, X, ε)− G (T0, X, ε)} · 1 (T1 − T0 > 0)

+{G (T0, X, ε)− G (T1, X, ε)} · 1 (T1 − T0 < 0)


=

∫∫
Tc

∫∫
{G (t1, x, e)− G (t0, x, e)} FX,ε|T0,T1

(dx, de|t0, t1) FT0,T1
(dt0, dt1)

+

∫∫
Td

∫∫
{G (t0, x, e)− G (t1, x, e)} Fε|T0,T1,X (dx, de|t0, t1) FT0,T1

(dt0, dt1) ,

where the first equality follows from that under Assumption C3, I+ (x) = 1 ⇐⇒ x ∈ X+ and

I− (x) = 1 ⇐⇒ x ∈ X−, the second equaltiy follows from eq. (S.1) and that under Assumption

C3, X ∈ X+, T1 ≥ T0 a.s. and for X ∈ X− T1 ≤ T0 a.s.

Similarly, the denominator of τWald_X can be derived as follows

∫
X
I+ (X)1T (x)− I− (X)1T (x) fX (x)dx

=

∫
X

{
I+ (X)E [T1 − T0|X = x]+ I− (X)E [T0 − T1|X = x]

}
fX (x)dx

=

∫
X
E [|T1 − T0||X = x] fX (x)dx

= E [|T1 − T0|]

=

∫∫
Tc,d

|t1 − t0|FT0,T1
(dt0, dt1)
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Therefore,

τWald_X

=

 ∫∫
Tc

∫∫
{G(t1, x, e)− G(t0, x, e)}FX,ε|T0,T1

(dx, de|t0, t1) FT0,T1
(dt0, dt1)

+
∫∫
Td

∫∫
{G(t0, x, e)− G(t1, x, e)}FX,ε|T0,T1

(dx, de|t0, t1) FT0,T1
(dt0, dt1)


∫∫
Tc,d
|t1 − t0|FT0,T1

(dt0, dt1)

=

∫∫
Tc

wt0,t1

{ ∫∫ G(t1, x, e)− G(t0, x, e)

t1 − t0
FX,ε|T0,T1

(dx, de|t0, t1)
}

FT0,T1
(dt0, dt1)

+

∫∫
Td

wt0,t1

{ ∫∫ G(t0, x, e)− G(t1, x, e)

t0 − t1
FX,ε|T0,T1

(dx, de|t0, t1)
}

FT0,T1
(dt0, dt1)

=

∫∫
Tc

wt0,t1E
[

Yt1 − Yt0

t1 − t0
|T1 = t1, T0 = t0

]
FT0,T1

(dt0, dt1)

+

∫∫
Td

wt0,t1E
[

Yt0 − Yt1

t0 − t1
|T1 = t1, T0 = t0

]
FT0,T1

(dt0, dt1)

=

∫∫
Tc,d

wt0,t1E
[

Yt1 − Yt0

t1 − t0
|T1 = t1, T0 = t0

]
FT0,T1

(dt0, dt1)

=

∫∫
Tc,d

wt0,t1 L AT Ec,d(t0, t1)FT0,T1
(dt0, dt1) ,

where recall L AT Ec,d(t0, t1) = L AT Ec(t0, t1) = E
[

Yt1
−Yt0

t1−t0
|T1 = t1, T0 = t0

]
by definition, and

wt0,t1 = |t1 − t0|/
∫∫
Tc
|t1 − t0|FT0,T1

(dt0, dt1).

S.2 Alternative DR estimands

This section briefly discusses alternative DR estimands defined over subsets of treatment quantiles

in which treatment changes are consistently positive or negative.

Consider first the model setup without covariates specified in Section 2. Let U+={u ∈ U : 1q (u) >

0}. Define τ DR
+ :=

∫
U+ τ(u)w+(u)du, where w+(u) = 1q (u) /

∫
U+ 1q (u) du. τ DR

+ can be rewrit-

ten as the ratio of the mean outcome difference over u ∈ U+ to the mean treatment difference over

u ∈ U+, i.e.,

τ DR
+ =

∫
U+
∫
{g (T1 (u) , e)− g (T0(u), e)} Fε|U (de|u) du∫

U+ 1T (u)du
.
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τ DR
+ carries a similar interpretation as that of τ DR but is only for the subset of treatment quantiles

u ∈ U+.12 In particular, when either monotonicity or treatment rank similarity holds over U+, τ DR
+

identifies a weighted average of the average treatment effects for all the responding (to IV changes)

units associated with this subset of quantiles. Similarly, one can define τ DR
− :=

∫
U− τ(u)w−(u)du,

where U−={u ∈ U : 1q (u) < 0} and w−(u) = 1T (u)/
∫
U− 1q (u) du.

Consider now the more general model setup with covariates given in Section 3. Let S+ =

{(x, v) ∈ S: 1q(x, v) > 0} and S− = {(x, v) ∈ S: 1q(x, v) < 0}. Assume that they are

non-empty. Then one can define

πDR
+ :=

∫∫
S+
π(x, v)w+(x, v)dvdx, (S.3)

where w+(x, v) = 1q(x, v) f (x)/
∫∫
S+ 1q(x, v) f (x)dvdx . So πDR

+ identifies a weighted av-

erage of the average treatment effects for all the responding units with (x, v) ∈ S+, when either

conditional monotonicity or conditional treatment rank similarity holds for S+. πDR
− can be anal-

ogously defined by replacing w+(x, v) with w−(x, v) and S+ with S− in eq. (S.3) respectively.

πDR
− identifies a weighted average of the average treatment effects for units for all the responding

units with (x, v) ∈ S−, regardless of whether they stay at the same treatment rank or not.

For estimation, one may estimate πDR
+ or πDR

− analogously by replacing |1q̂(X i , v)| in Section

4.1 with 1q̂(X i , v) or −1q̂(X i , v), respectively.

S.3 Assumptions for Inference

Our inference requires the following assumptions. Assumption A1 collects the conditions in The-

orem 3 in Angrist, Chernozhukov, and Fernández-Val (2006).

Assumption A1. The conditional density fT |X,Z (t |x, z) is bounded and uniformly continuous in

t, uniformly for x ∈ X , z = 0, 1. E
[
‖X‖3

]
<∞. Let ϑ(v):=E

[
fT |X,Z (S

′a(v)|X, Z)SS′
]
, where

12Under treatment rank invariance, monotonicity holds automatically if treatment quantile changes do not switch

signs. This is not true in general under treatment rank similarity. Under rank invariance, if U0 = u, then U1 = u and

vise versa; however, there is no such one-to-one mapping in the counterfactual treatment ranks under treatment rank

similarity, and hence monotonic treatment quantile changes do not guarantee individual level monotonicity.
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S:=(1, X ′, Z , Z X ′)′, be positive definite for all v ∈ V which is a closed subset of (0, 1).

Let e = Y−E [Y |Z , X, T ]. Let G = E
[
ψ J (X, T, Z)ψ J (X, T, Z)′

]
= E

[
9 ′9/n

]
be positive

definite for each J . Let � = E
[
e2ψ J (X, T, Z)ψ J (X, T, Z)′

]
and 0 = G−1�G−1.

Let L∞(T ) denote the set of all bounded measurable functions g T → R endowed with the

sup-norm ‖g‖∞ = supt |g(t)|. Let ‖ · ‖`q denote the vector `q-norm when applied to vectors and

the operator norm induced by the vector `q-norm when applied to matrices. If {an} and {bn} are

sequences of positive numbers, then we say an . bn if lim supn→∞ an/bn <∞.

Consider a collection of linear functionals {L` ` ∈ L}with an index setL. For example, for the

conditional mean function mz(x, t), one can let L`(mz) = mz(x, t) with ` = (x, t) ∈ L = X ×T ,

for z = 0, 1. Assumptions A2 and A3 below collect the assumptions in Chen and Christensen

(2018).

Assumption A2. 1. (i) (X, T ) have compact rectangular support XT ⊂ Rdx+1 and the

density of (X, T ) is uniformly bounded away from 0 and∞ on XT .

(ii) For z = 0, 1, mz ∈ H ⊂ L∞(X, T ). The sieve space for (X, T ) is the closed linear

span 9J = clsp{ψ J1, ..., ψ J J } ⊂ L2(X, T ), and ∪J9J is dense in (H, ‖ · ‖L∞(X,T )).

2. (i) E
[
|ei |2+δ

]
<∞ for some δ > 0.

(ii) E
[
|ei |3|Zi = z, X i = x, Ti = t

]
<∞ and E

[
e2

i |Zi = z, X i = x, Ti = t
]
∈ σ 2, σ̄ 2 for

some finite and positive constants (σ 2, σ̄ 2), uniformly for (x, t) ∈ XT , for z = 0, 1.

3. (i) 9J is Hölder continuous: there exist finite constants C ≥ 0, C̃ > 0 such that

‖G−1/2{ψ J (x, t, z)− ψ J (x̃, t̃, z)}‖`2 . J C‖(x, t)− (x̃, t̃)‖C̃
`2 for t, t̃ ∈ T , x, x̃ ∈ X ,

z = 0, 1.

(ii) Let ζ :=supx,t,z ‖G
−1/2ψ J (x, t, z)‖`2 satisfy ζ 2/

√
n = O(1) and ζ (2+δ)/δ√

(log n)/n = o(1).

4. (i) Let σ 2
n(L`) = L`(ψ

J )′0L`(ψ
J ) ↗ +∞ as n → ∞ for each ` ∈ L. Let ηn be a

sequence of nonnegative numbers such that ηn = o(1). Let m̃z(x, t) = ψ J (x, t, z)′c̃

where c̃ = (9 ′9)−19 ′
(
m Z1

(X1, T1), ...,m Zn
(Xn, Tn)

)′
and sup`∈L

√
n|L`(m̃z(x, t))−

L`(mz(x, t))|/σ n(L`) = Op(ηn).
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(ii) Let un(L`)(X i , Ti , Zi ) = ψ J (X i , Ti , Zi )
′G−1L`(ψ

J )/σ n(L`) be the normalized sieve

Riesz representer. Let dn(`1, `2) =
(
E
[
(un(L`1

)(X i , Ti , Zi )−un(L`2
)(X i , Ti , Zi ))

2
])1/2

be the semimetric on L. Let N (XT , dn, ς) be the ς -covering number of XT with re-

spect to dn . There is a sequence of finite constant cn & 1 that could grow to infinity

such that 1+
∫∞

0

√
log N (XT , dn, ς)dς = O(cn).

(iii) Let δm,n be a sequence of positive constants such that ‖m̂z − mz‖∞ = Op(δm,n) =

op(1). Define δV,n:=
(
ζ (2+δ)/δ

√
(log J )/n

)δ/(1+δ)
+ δm,n + ζ

√
(log J )/n. There is a

sequence of constant rn > 0 decreasing to zero slowly such that (a) rncn . 1 and

ζ J 2/(r3
n

√
n) = o(1), (b) ζ

√
(J log J )/n + ηn + δV,ncn = o(rn).

Assumption A3. Let J
√
(J log J )/n = o(1). Let B

p
∞,∞ denote the Hölder space of smoothness

p > 0 and ‖ · ‖B
p
∞,∞

denote its norm. Let B∞(p, L) = {m ∈ B
p
∞,∞ ‖m‖B

p
∞,∞
≤ L} denote a

Hölder ball of smoothness p > 1 and radius L ∈ (0,∞). Let m ∈ B∞(p, L) and 9J be spanned

by a B-spline basis of order γ > p or a CDV wavelet basis of regularity γ > p.

Assumption A3 ensures the uniform consistency of ∂t m̂z(x, t) = ∂m̂z(x, t)/∂t , which is used

to account for the Step 1 estimation error.

S.4 Inference for π(x, v)

Let the sieve variance estimator for π̂(x, v) be σ̂ 2(x, v) = 1ψ̂(x, v)′0̂1ψ̂(x, v)/1q̂(x, v)2,

where 1ψ̂(x, v) = ψ J (x, q̂1(x, v), 1) − ψ J (x, q̂0(x, v), 0). The 100(1 − α)% confidence in-

terval for π(x, v) can be constructed as
[
π̂(x, v)− z∗1−ασ̂ (x, v)/

√
n, π̂(x, v)+ z∗1−ασ̂ (x, v)/

√
n
]
,

where the critical value z∗1−α can be 8−1(1− α/2) by the asymptotically normal approximation.

Theorem 6. Let Assumptions A1-A3 hold. Then
√

n(π̂(x, v)− π(x, v))/σ̂ (x, v)

d
−→ N (0, 1) uniformly for (x, v) ∈ ϒ = {(x, v) ∈ X × V |1q(x, v)| ≥ 0}.

For the uniform confidence interval over (x, v) ∈ ϒ , the critical value z∗1−α is simulated from

the bootstrap sieve t-statistic Z∗n(x, v) for (x, v) ∈ ϒ : Let $ 1, ...,$ n be i.i.d. random variables
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independent of the data with mean zero, unit variance, and finite third moment, e.g., N (0, 1). Let

Z∗n(x, v) =
1ψ̂(x, v)′Ĝ−1

1q̂(x, v)σ̂ (x, v)
√

n

n∑
i=1

ψ J (x, T, Zi )êi$ i .

Calculate Z∗n(x, v) for a large number of independent draws of$ 1, ...,$ n . Then the critical value

z∗1−α is the (1 − α) quantile of sup(x,v)∈ϒ |Z∗n(x, v)| over the draws. Theorem 4.1 in Chen and

Christensen (2018) implies the result on the consistency of the sieve score bootstrap.

sups∈R

∣∣∣P( sup(x,v)∈ϒ |
√

n
(
π̂(x, v)−π(x, v)

)
/σ̂ (x, v)| ≤ s

)
−P∗

(
sup(x,v)∈ϒ |Z∗n(x, v)| ≤ s

)∣∣∣ =
op(1), where P∗ denotes a probability measure conditional on the data {Yi , Ti , X i , Zi }ni=1.

S.5 Proofs: Estimation and Inference

The following proofs apply the results of Angrist, Chernozhukov, and Fernańdez-Val (2006) (ACF,

henceforth) and Chen and Christensen (2018) (CC, henceforth). To simplify exposition, we collect

notations used in the proofs below. We suppress the subscripts i, z and dependence on v, when

there is no confusion.

Notation:

φi (v) = ϑ(v)
−1
(
1(Ti ≤ S′i a(v))− v

)
Si

S1i = (1, X ′i , 1, X ′i )
′, S0i = (1, X ′i , 0, 0′(dx×1))

′,1Si = S1i − S0i

∂tmz(X, qz(X, v)) =
∂

∂t
mz(X, t)|t=qz(X,v)

qzi = qz(X i , v), q̂zi = q̂z(X i , v)

1qi = 1q(X i , v) = q1i − q0i = (S1i − S0i )
′a(v) = 1S′i a(v)

1q̂i = 1q̂(X i , v) = q̂1i − q̂0i = (S1i − S0i )
′â(v) = 1S′i â(v)

1ψ i = 1ψ(X i , v) = ψ
J (X i , q1(X i , v), 1)− ψ J (x, q0(X i , v), 0)

10



1ψ̂ i = 1ψ̂(X i , v) = ψ
J (X i , q̂1(X i , v), 1)− ψ J (X i , q̂0(X i , v), 0)

1mi = 1m(X i , v) = m1(X i , q1(X i , v))− m0(X i , q0(X i , v))

1m̂i = 1m̂(X i , v) = m̂1(X i , q̂1(X i , v))− m̂0(X i , q̂0(X i , v)) = 1ψ̂
′
i ĉ

1m̌i = 1m̌(X i , v) = m̂1(X i , q1(X i , v))− m̂0(X i , q0(X i , v)) = 1ψ
′
i ĉ

χ i = χ(X i , v) = 1(|1q(X i , v)| ≥ 0|)

χ±i = χ
±(X i , v) = 1(±1q(X i , v) ≥ 0|)

Lemma 5 is for estimating the sign function.

Lemma 5. Let Assumption A1 hold. Let
√

nl−1 = o(1). Then

1.

1
√

n

n∑
i=1

1

l

∑
v∈V (l)

1m(X i , v)
(
χ̂+(X i , v)− χ

+(X i , v)
)

=
1
√

n

n∑
i=1

∫ 1

0

∂

∂α
E
[
1m(X, v)1(1S′α ≥ 0)

]′ ∣∣
α=a(v)

φi (v)dv + op(1).

2.

1
√

n

n∑
i=1

1

l

∑
v∈V (l)

1q(X i , v)
(
χ̂+(X i , v)− χ

+(X i , v)
)

=
1
√

n

n∑
i=1

∫ 1

0

∂

∂α
E
[
1q(X, v)1(1S′α ≥ 0)

]′ ∣∣
α=a(v)

φi (v)dv + op(1).

Step 1 is Op(n
−1/2), so the estimation error of χ is of first order asymptotically by Lemma 5.

Lemma 6 is for the approximation error from the numerical integration.

Lemma 6. Let a function f (x, v) be of bounded variation in v ∈ V , uniformly in x ∈ X . Then

sup
x∈X

∣∣l−1
∑
v∈V (l)

f (x, v)1(1q(x, v) > 0)−

∫ 1

0

f (x, v)1(1q(x, v) > 0)dv
∣∣ = O(l−1).
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The inference theory for π(v) follows analogously to that of πDR , but without integrating over

v. Therefore we first present the proof of Theorem 4 for πDR .

Proof of Theorem 4: Define A+ and A− as A± =
∫ 1

0

∫
X 1m(x, v)χ±(x, v)

fX (x)dxdv. So A = A+ − A− =
∫ 1

0

∫
X 1m(x, v)/1q(x, v)

(
1q(x, v)1(1q(x, v) ≥ 0) −

1q(x, v)1(1q(x, v) ≤ 0)
)

fX (x)dxdv =
∫ 1

0

∫
X π(x, v)|1q(x, v)|1(|1q(x, v)|

≥ 0) fX (x)dxdv.

Define B+ and B− as B± =
∫ 1

0

∫
X 1q(x, v)χ±(x, v) fX (x)dxdv. By a similar argument as

A, we can show that B = B+ − B−. Therefore, πDR = A/B and πDR
± = A±/B±. Linearize

π̂DR − πDR = ( Â − A)/B − (B̂ − B)π/B + Op

(
| Â − A||B̂ − B|/B2 + |B̂ − B|2/B2

)
.

The proof focuses on Â+, the estimator of A+. The same arguments apply to B̂+, the estimator

of B+. The same arguments apply to π̂DR
− and hence π̂DR

.

Write π̂DR
+ = Â+/B̂+, where

Â+ =
1

n

n∑
i=1

1

l

∑
v∈V (l)

1m̂(X i , v)χ̂
+(X i , v),

B̂+ =
1

n

n∑
i=1

1

l

∑
v∈V (l)

1q̂(X i , v)χ̂
+(X i , v).

In the following, we suppress the subscripts of + and superscripts of DR for expositional sim-

plicity. Linearize π̂−π = ( Â−A)/B−(B̂−B)π/B+Op

(
| Â − A||B̂ − B|/B2 + |B̂ − B|2/B2

)
.

Let Ã = n−1
∑n

i=1 l−1
∑
v∈V (l) 1m̂(X i , v)χ(X i , v) for a known sign function. Decompose

Â − A = Â − Ã + Ã − A. The estimation error in 1m̂.

Ã − A =
1

n

n∑
i=1

1

l

∑
v∈V (l)

(
1m̂(X i , v)−1m(X i , v)

)
χ(X i , v) (S.4)

+
1

n

n∑
i=1

1

l

∑
v∈V (l)

1m(X i , v)χ(X i , v)− A. (S.5)
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By Lemma 6 and assuming
√

nl−1 = o(1), (S.5) is n−1
∑n

i=1 RA3i + op(n
−1/2), where RA3i =∫ 1

0
1m(X i , v)χ

+(X i , v)dv − A+.

We focus on (S.4) next. Decompose 1m̂i −1mi =
(
1m̂i −1m̌i

)
+
(
1m̌i −1mi

)
. The first

part is for Step 1 estimation error, and the second part is for Step 2 estimation error.

Step 1 Theorem 3 in ACF shows that â(v)−a(v) = n−1
∑n

i=1 φi (v)+op(n
−1/2) uniformly over

v ∈ V and converges in distribution to a zero mean Gaussian process indexed by v. Decompose

1m̂i −1m̌i

= m1(X i , q̂1i )− m1(X i , q1i )− (m0(X i , q̂0i )− m0(X i , q0i ))+ so1

= ∂tm1(X i , q1i )(q̂1i − q1i )− ∂tm0(X i , q0i )(q̂0i − q0i )+ so1+ so2

= ∂tm1(X i , q1i )S1i (â(v)− a(v))− ∂tm0(X i , q0i )S0i (â(v)− a(v))+ so1+ so2,

where (We suppress the subscript i for simplicity.)

so1 = m̂1(q̂1)− m1(q̂1)−
(
m̂0(q̂0)− m0(q̂0)

)
−
(
m̂1(q1)− m1(q1)

)
+
(
m̂0(q0)− m0(q0)

)
= Op

(
‖∂t m̂z − ∂tmz‖∞‖q̂z − qz‖∞

)
,

so2 = Op

(
∂2

t m1

(
q̂1 − q1

)2
+ ∂2

t m0

(
q̂0 − q0

)2)
= Op(‖q̂z − qz‖

2
∞),

as ∂2
t mz is uniformly bounded by Assumption A3. ACF and Corollary 3.1(ii) in CC implies

that so1 + so2 = Op(‖q̂z − qz‖∞‖∂t m̂z − ∂tmz‖∞ + ‖q̂z − qz‖2∞) = Op(n
−1/2(J−(p−1) +

J
√
(J log J )/n)+ n−1) = op(n

−1/2) uniformly over v ∈ V , by assuming J
√
(J log J )/n = o(1)

and p > 1.
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Then

√
n

1

n

n∑
i=1

1

l

∑
v∈V (l)

(1m̂i −1m̌i )χ i

=
1

n

n∑
i=1

1

l

∑
v∈V (l)

(∂tm1(X i , q1i )S
′
1iχ i

√
n(â(v)− a(v))

− ∂tm0(X i , q0i )S
′
0iχ i

√
n(â(v)− a(v))+ op(1)

=
1

l

∑
v∈V (l)

E
[
(∂tm1(X i , q1i )S1i − ∂tm0(X i , q0i )S0i ) χ i

]′√
n(â(v)− a(v))+ op(1)

=
1
√

n

n∑
j=1

1

l

∑
v∈V (l)

E
[
(∂tm1(X i , q1i )S1i − ∂tm0(X i , q0i )S0i ) χ i

]′
φ j (v)+ op(1)

=
1
√

n

n∑
j=1

∫ 1

0

E
[
(∂tm1(X i , q1i )S1i − ∂tm0(X i , q0i )S0i ) χ i

]′
φ j (v)dv + op(1),

where the third equality is by ACF, and the last equality is by Lemma 6 and
√

nl−1 = o(1).

For the second equality, letF =
{
1(1S′i a > 0), a ∈ B

}
that is a VC subgraph class and hence a

bounded Donsker class. Then F(∂tm1(X i , S′1i
a)S1i−∂tm0(X i , S′0i

a)S0i ) is also bounded Donsker

with a square-integrable envelop 2 supz,x,t |∂tmz(x, t)|max j∈{1,2,...,dx } |X j | by Theorem 2.10.6 in

Van der Vaart and Wellner (1996). So n−1
∑n

i=1(∂tm1(X i , q1i )S1i − ∂tm0(X i , q0i )S0i )χ i =

E(∂tm1(X i , q1i )S1i − ∂tm0(X i , q0i )S0i )χ i + op(n
−1/2) uniformly in v ∈ V .

Step 2 We show the stochastic equicontinuity, n−1
∑n

i=1(1m̌i−1mi )χ i = E
[
(1m̌i −1mi )χ i

]
+

so3, where so3 = op(n
−1/2) uniformly in v ∈ V .

Let 1m̃i = 1ψ ′i c̃ and 1m̌i = 1ψ ′i ĉ. Then decompose so3 = so31 + so32 to the “standard

deviation" term so31 and the “bias" term so32,

so3 =
1

n

n∑
i=1

χ i

(
1m̌i −1m̃i

)
−

∫
X
χ i

(
1m̌i −1m̃i

)
FX (d X i ) (so31)

+
1

n

n∑
i=1

χ i (1m̃i −1mi )−

∫
X
χ i (1m̃i −1mi ) FX (d X i ). (so32)

Let
√

nso31 = Q′J (ĉ − c̃), where Q J =
√

n( 1
n

∑n
i=1 χ i1ψ i −

∫
X χ i1ψ i FX (d X i )). By
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var(Q J ) = Eχ i1ψ i1ψ
′
i and the Jensen’s inequality, E‖Q J‖ ≤ O(

√
E‖1ψ i‖2) = O(ζ ). As

given in the proof of Lemma 3.1 in CC, ‖ĉ − c̃‖`∞ = Op(
√

log J/(nλmin(G))), where the mini-

mum eigenvalue λmin(G) > 0.13 Then E|so31| = O(n−1/2ζ
√

log J/(nλmin(G))) by the Cauchy-

Schwartz inequality. The Markov’s inequality implies so31 = Op(n
−1ζ

√
log J/λmin(G)) =

op(n
−1/2) implied by Assumption A2.5.

var(
√

nso32) = O(E
[
χ i (1m̃i −1mi )

2
]
) = O(‖m −5J m‖2∞), where 5J m =

arg minh∈9J
‖m − h‖L2(X,T,Z), by Theorem 3.1 (i) in CC. The Markov’s inequality yields so32 =

Op(n
−1/2‖m −5J m‖∞) = Op(n

−1/2 J−p) = op(1) by the results in the proof of Corollary 3.1

in CC.

By Lemma 6 and assuming
√

nl−1 = o(1), l−1
∑
v∈V (l) E

[
(1m̌i −1mi )χ i

]
=∫ 1

0
E
[
1m̌iχ i

]
dv − A + op(n

−1/2).

Note that A is based on a linear functional of m, L(m) =
∫ 1

0

∫
X mz(x, qz(x, v))1(1q(x, v) >

0)FX (dx)dv. So we use the results on linear functionals of a sieve estimator in CC. Let σ 2
A2n
=

E
[
R2

A2i

]
, where RA2i = D+′G−1ψ J (X i , Ti , Zi )ei and D+ =

∫ 1

0
E
[
1ψ J (X, v)χ+(X, v)

]
dv,

with a consistent estimator σ̂ 2
A2. Lemma 4.1 in CC provides

∣∣∣∣∣
√

n

σ̂ A2

(∫ 1

0

E
[
1m̌iχ i

]
dv − A

)
−

1

σ A2n

√
n

n∑
i=1

RA2i

∣∣∣∣∣ = op(1).

The estimation error from the sign function Â − Ã = n−1
∑n

i=1 l−1∑
v∈V (l) 1m(X i , v)

(
χ̂(X i , v)− χ(X i , v)

)
+ op(1/

√
n) by n−1

∑n
i=1 l−1

∑
v∈V (l)(

1m̂(X i , v)−1m(X i , v)
)(
χ̂(X i , v)−χ(X i , v)

)
= Op

(
‖1m̂−1m‖∞‖q̂z−qz‖∞

)
= op(n

−1/2).

Together with Lemma 5(i),
∣∣√n( Â− A)−n−1/2

∑n
i=1 RAi

∣∣ = op(1), where RAi = RA1i+ RA2i+

13By Lemma A.1 in CC, s
−1
J K � π J = 1 for the exogenous case.
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RA3i with

RA1i =

∫ 1

0

(
E
[
(∂tm1(X, q1)S1 − ∂tm0(X, q0)S0) χ

+(X, v)
]

+
∂

∂α
E
[
1m(X, v)1(1S′α ≥ 0)

] ∣∣
α=a(v)

)′
φi (v)dv,

By the similar arguments as for A in (S.4) and (S.5),

B̃ − B =
1

n

n∑
i=1

1

l

∑
v∈V (l)

(
1q̂(X i , v)−1q(X i , v)

)
χ(X i , v) (S.6)

+
1

n

n∑
i=1

1

l

∑
v∈V (l)

1q(X i , v)χ(X i , v)− B. (S.7)

By Lemma 6, (S.7) is n−1
∑n

i=1

∫ 1

0
1q(X i , v)χ(X i , v)dv − B + op(n

−1/2). (S.6) is

1

n

n∑
i=1

1

l

∑
v∈V (l)

1S′i

(
â(v)− a(v)

)
χ i

=
1

n

n∑
j=1

1

l

∑
v∈V (l)

1

n

n∑
i=1

χ i1S′iφ j (v)+ op(n
−1/2)

=
1

n

n∑
j=1

1

l

∑
v∈V (l)

E
[
χ i1Si

]′
φ j (v)+ op(n

−1/2)

=
1

n

n∑
j=1

∫ 1

0

E
[
1S′iχ i

]
φ j (v)dv + op(n

−1/2),

where the first equality by ACF, and the third equality by Lemma 6. For the second equality, let

F =
{
1(1S′i a > 0), a ∈ B

}
that is a VC subgraph class and hence a bounded Donsker class. Then

F1S is Donsker with a square-integrable envelop max j∈{1,2,...,dx } |X j | by Theorem 2.10.6 in Van

der Vaart and Wellner (1996). So n−1
∑n

i=1 χ i1Si − E
[
χ i1Si

]
= op(1) uniformly over v ∈ V

Together with Lemma 5(ii), we obtain
∣∣√n(B̂− B)−n−1/2

∑n
i=1 RBi

∣∣ = op(1), where RBi =
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RB1i + RB3i with

RB1i =

∫ 1

0

(
E
[
1S′χ+(X, v)

]
+
∂

∂α
E
[
1q(X, v)1(1S′α ≥ 0)

]′ ∣∣
α=a(v)

)
φi (v)dv

RB3i =

∫ 1

0

1q(X i , v)χ
+(X i , v)dv − B.

By a linearization for π̂DR
+ , π̂DR

+ −π
DR
+ =

Â+

B̂+
− A+

B+
= Â+−A+

B+
−
πDR
+

B+
(B̂+− B+)+op(n

−1/2).

Therefore, we define R+i = RAi − πDR
+ RBi = R+1i

+ R+2i
+ R+3i

, where R+1i
= RA1i − πDR

+ RB1i ,

R+2i
= RA2i , and R+3i

= RA3i − πDR
+ RB3i . That is,

R+1i
=

∫ 1

0

(
E
[(
∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0 − π

DR
+ 1S

)
χ+(X, v)

]
+
∂

∂α
E
[(
1m(X, v)− πDR

+ 1q(X, v)
)

1(1S′α ≥ 0)
] ∣∣
α=a(v)

)′
φi (v)dv,

R+2i
= D+′G−1ψ J (X i , Ti , Zi )ei ,with D+ =

∫ 1

0

E
[
1ψ J (X, v)χ+(X, v)

]
dv,

R+3i
=

∫ 1

0

(
1m(X i , v)− π

DR
+ 1q(X i , v)

)
χ+(X i , v)dv.

Then we obtain π̂DR
+ −π

DR
+ = n−1

∑n
i=1

(
RAi−πDR

+ RBi

)
/B++op(n

−1/2) = n−1
∑n

i=1 R+i /B++

op(n
−1/2).

Asymptotic normality We suppress the subscripts of+ and superscripts of DR for expositional

simplicity. Because R2i depends on (Yi , Ti , X i ), R1i depends on (Ti , X i ), and R3i depends on X i ,

the law of iterated expectations yields σ 2
n =

(
E
[
R2

1i

]
+ E

[
R2

2i

]
+ E

[
R2

3i

])
/B2 = (σ 2

1 + σ
2
2n
+

σ 2
3)/B2.

We will show the Bahadur representation that

∣∣∣∣∣
√

n(π̂ − π)

σ̂
−

1
√

n

n∑
i=1

Ri

Bσ n

∣∣∣∣∣
≤

∣∣∣∣∣
√

n(π̂ − π)

σ n

−
1
√

n

n∑
i=1

Ri

Bσ n

∣∣∣∣∣+
∣∣∣∣√n(π̂ − π)

σ n

(σ n

σ̂
− 1

)∣∣∣∣ = op(1)
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by (i) n−1/2
∑n

i=1 Ri/(Bσ n)
d
→ N (0, 1), and (ii) |σ n/σ̂ − 1| = op(1), as shown below.

(i) Asymptotic normality will follow from the Lyapunov central limit theorem with the third ab-

solute moment, n−1/2E|Ri |3/(Bσ n)
3→ 0, since {Ri }ni=1 are independent across i , with mean zero

and variance 1. By the assumed conditions, it is straightforward to show that n−1/2E|R1i |3/(Bσ 1)
3→

0. We show below that n−1/2E|R2i |3/(Bσ 2n)
3 → 0. Then it implies that all the cross-product

terms n−1/2E|R1i R2i R3i |/(Bσ n)
3 → 0 and n−1/2E|R2

j i Rki |/(Bσ n)
3 → 0 for j, k = 1, 2, 3,

j 6= k.

Denote as ψ i = ψ
J (X i , Ti , Zi ). By Assumption A2.2(ii),

σ 2
2n = E

[
R2

2i

]
/B2 = E

[
(D′G−1ψ i )

2e2
i

]
/B2

≥ E
[
(D′G−1ψ i )

2
]
σ 2/B2 = D′G−1Dσ 2/B2. (S.8)

By the Schwarz inequality, (S.8), and Assumption A2.3(ii),

(D′G−1ψ i )
2

σ 2
2n

≤
(D′G−1D′)(ψ ′i G−1ψ i )

σ 2
2n

≤
ζ 2

σ 2
. (S.9)

Then by (S.8), (S.9), and Assumption A2.2(iii),

1
√

n
E

[
|R2i |3

B3σ 3
2n

]
=

1
√

n
E

[
|D′G−1ψ i ei |3

B3σ 3
2n

]

=
1
√

n
E

[
(D′G−1ψ i )

2

B3σ 2
2n

|D′G−1ψ i |

σ 2n

E
[
|ei |

3|X i , Ti , Zi

]]

≤
ζ

√
nB3σ 3

sup
x,t,z

E
[
|ei |

3|X i = x, Ti = t, Zi = z

]
= O

(
ζ
√

n

)
= o(1).

(ii) It is straightforward that σ̂ 2
1 = n−1

∑n
i=1 R̂2

1i
/B̂2 p
−→ σ 2

1 = E
[
R2

1i

]
/B2 and σ̂ 2

3

p
−→ σ 2

3.

The same arguments in Lemma G.4 in CC give |σ 2n/σ̂ 2−1| = Op(δV,n) = op(1). So |σ n/σ̂−1| =

op(1).

By (i) that n−1/2
∑n

i=1 Ri/(Bσ n) = Op(1) and (ii), the second term

∣∣∣√n(π̂−π)
σ̂

(
σ̂
σ n
− 1

)∣∣∣ =
18



Op(1)op(1) = op(1). We then obtain the Bahadur representation. The asymptotic normality

follows from the result (i).

Therefore, we obtain that when B+ > 0,
√

n
(
π̂DR
+ − π

DR
+

)
/σ̂ n+ = n−1/2

∑n
i=1 R+i

/(B+σ n+)+ op(1)
d
−→ N (0, 1), where σ̂ 2

+ is a consistent estimator of σ 2
n+ = E

[
R+2

i

]
/B2
+.

For πDR
− , define

R−1i
=

∫ 1

0

(
E
[(
∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0 − π

DR
− 1S

)
χ−(X, v)

]
+
∂

∂α
E
[(
1m(X, v)− πDR

+ 1q(X, v)
)

1(1S′α ≤ 0)
] ∣∣
α=a(v)

)′
φi (v)dv.

Define R−i as R+i by replacing + with − in all the components in R+i . By the same arguments

for πDR
+ , we obtain that when B− > 0,

√
n
(
π̂DR
− − π

DR
−

)
/σ̂− = n−1/2

∑n
i=1 R−i /(B−σ n−) +

op(1)
d
−→ N (0, 1), where σ̂ 2

− is a consistent estimator of σ 2
n− = E

[
R−2

i

]
/B2
−, such that

|σ n−/σ̂− − 1| = op(1).

For πDR , the same linearization yields π̂DR−πDR = ( Â−A)/B−(B̂−B)πDR/B+Op

(
| Â−

A||B̂ − B|/B2 + |B̂ − B|2/B2
)
. Let Ri = R+i − R−i = R1i + R2i + R3i , where Rli = R+li − R−li

for l = 1, 2, 3 by replacing πDR
+ and πDR

− with πDR . Specifically, let sgn(x, v) = 1(1q(x, v) ≥
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0)− 1(1q(x, v) ≤ 0),

R1i =

∫ 1

0

(
E
[
(∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0 − π

DR1S)sgn(X, v)
]

+
∂

∂α
E
(
1m(X, v)− πDR1q(X, v)

)
(1(1S′α ≥ 0)

− 1(1S′α ≤ 0))
∣∣
α=a(v)

)′
φi (v)dv,

with φi (v) = ϑ(v)
−1
(
1(Ti ≤ S′i a(v))− v

)
Si ,

S1i = (1, X ′i , 1, X ′i )
′, S0i = (1, X ′i , 0, 0′(dx×1))

′,1Si = S1i − S0i ,

R2i = D′G−1ψ J (X i , Ti , Zi )ei ,

with D =
∫ 1

0

E
[
(ψ J (X, q1(X, v), 1)− ψ J (X, q0(X, v), 0))sgn(X, v)

]
dv.

R3i =

∫ 1

0

(
1m(X i , v)− π

DR1q(X i , v)
)

sgn(X i , v)dv,

B =

∫ 1

0

∫
X
|1q(x, v)|1(|1q(x, v)| ≥ 0) f (x)dxdv. (S.10)

Proof of Theorem 3: The proof follows exactly the same arguments in the proof of Theorem 4

and Lemma 5 by removing all “
∫ 1

0
· · · dv" and “l−1

∑
v∈V (l)". We can derive the influence function

of π̂(v) to be Ri (v)/B(v) defined as the influence function of π̂DR
given in (S.10) by removing

all
∫ 1

0
· · · dv. Specifically, as πDR , define π+(v) over units experiencing positive changes for

v ∈ V+0 = {v ∈ V P(1q(X, v) ≥ 0) > 0}. Define B+(v) =
∫
X 1q(x, v)χ+(x, v) f (x)dx ,

so B+ =
∫ 1

0
B+(v)dv. The influence function of π̂+(v) is R+i (v)/B+(v) = (R

+
1i
(v) + R+2i

(v) +
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R+3i
(v))/B+(v), where

R+1i
(v) =

(
∂

∂α
E
[
(1m(X, v)− π+(v)1q(X, v)) 1(1S′α ≥ 0)

] ∣∣
α=a(v)

+ E
[
(∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0

− π+(v)1S)χ+(X, v)
])′
φi (v),

R+2i
(v) = D+′(v)G−1ψ J (X i , Ti , Zi )ei ,with D+(v) = E

[
1ψ J (X, v)χ+(X, v)

]
,

R+3i
(v) = (1m(X i , v)− π+(v)1q(X i , v)) χ

+(X i , v). (S.11)

Similarly consider π−(v) over units experiencing negative changes for v ∈ V0 = {v ∈ V

P(−1q(X, v) ≥ 0) > 0}. Let B(v) = B+(v)−B−(v), where B−(v) =
∫
X 1q(x, v)χ−(x, v) f (x)dx .

Let Ri (v) = R+i (v)− R−i (v), and the influence function of π̂(v) is Ri (v)/B(v).

Define σ 2(v) = E
[
Ri (v)

2
]
/B(v)2. The unknown elements are estimated following the same

procedure as π̂DR
by removing “l−1

∑
v∈V (l) ." For example, D̂+(v) = n−1

∑n
i=11ψ̂ i χ̂

+(X i , v).

Proof of Theorem 6: We first show that the estimation error of q̂z(x, v) in Step 1 is of smaller or-

der than the estimation error in Step 2, i.e., the first-order asymptotic distribution of π̂(x, v) is as if

qz(x, v)was known. Under Assumption A1, Theorem 3 in ACF implies that sup(x,v)∈X×V |q̂z(x, v)−

qz(x, v)| = Op(n
−1/2). The Step 2 series least squares estimator converges at a nonparametric

rate shower than
√

n. Therefore the first-order asymptotic distribution of π̂(x, v) is dominated by

Step 2 1m̌(x, v).

Step 1 When Tzi is observed, i.e., there is no Step 1 estimation error, define π̌(x, v) =

1m̌(x, v)/1q(x, v). Decompose π̂(x, v)− π̌(x, v) = 1m̂
1q̂
− 1m̌

1q
=
(
1m̂
1q̂
− 1m̌

1q̂

)
+
(
1m̌
1q̂
− 1m̌

1q

)
.

The second part is for Step 1 in the denominator: 1m̌
1q̂
− 1m̌

1q
= 1m

1q2 (1q − 1q̂) + so1. The first
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part is for Step 1 in the argument in the numerator,

1m̂

1q̂
−
1m̌

1q̂

=
1

1q
(1m̂ −1m̌)+ so2

=
1

1q
(m1(x, q̂1)− m1(x, q1)− (m0(x, q̂0)− m0(x, q0)))+ so2+ so3

=
1

1q
(∂tm1(x, q1)(q̂1 − q1)− ∂tm0(x, q0)(q̂0 − q0))+ so2+ so3+ so4,

where

so1 =
1m̌

1q̂1q
(1q −1q̂)−

1m

1q2
(1q −1q̂) = (1q −1q̂)

1

1q

(
1m̌

1q̂
−
1m

1q

)
,

so2 = 1m̂

(
1

1q̂
−

1

1q

)
+1m̌

(
1

1q
−

1

1q̂

)
=
(
1m̂ −1m̌

) ( 1

1q̂
−

1

1q

)
,

so3 =
1

1q

{
m̂1(x, q̂1)− m1(x, q̂1)−

(
m̂0(x, q̂0)− m0(x, q̂0)

)
−
(
m̂1(x, q1)

− m1(x, q1)
)
+
(
m̂0(x, q0)− m0(x, q0)

)}
= Op

(
(∂t m̂1(x, q1)− ∂tm1(x, q1))(q̂1 − q1)

)
,

so4 = Op

(
∂2

t m1

(
q̂1 − q1

)2
+ ∂2

t m0

(
q̂0 − q0

)2)
= Op(‖q̂z − qz‖

2
∞).

Thus so1 + so2 + so3 + so4 = Op(‖T̂ − T ‖2∞ + ‖T̂ − T ‖∞‖∂t m̌ − ∂tm‖∞) = Op(n
−1 +

n−1/2(J−(p−1) + J
√
(J4 log J )/n)) = op(n

−1/2) uniformly over (x, v) ∈ ϒ , by Corollary 3.1(ii)
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in CC and assuming J
√
(J log J )/n = o(1) and p > 1. Therefore,

√
n
(
π̂(x, v)− π̌(x, v)

)
=
√

n

{
1m

1q2
(1q −1q̂)+

1

1q
(∂tm1(x, q1)(q̂1 − q1)− ∂tm0(x, q0)(q̂0 − q0))

}
+ op(1)

=

{
−
π(x, v)

1q
(S1 − S0)+

1

1q
(∂tm1(x, q1)S1 − ∂tm0(x, q0)S0)

}′√
n(â(v)− a(v))

+ op(1)

=

{
−
π(x, v)

1q
1S +

1

1q
(∂tm1(x, q1)S1 − ∂tm0(x, q0)S0)

}′
1
√

n

n∑
j=1

φ j (v)+ op(1) (S.12)

by Theorem 3 in ACF and ‖π̂ − π̌‖∞ = Op(n
−1/2).

Step 2 Define Zn ∼ N (0,0), σ 2
n(x, v) = 1ψ(x, v)

′01ψ(x, v)/1q(x, v)2, and

Zπn (x, v) =
1ψ(x, v)′

1q(x, v)σ n(x, v)
Zn.

Lemma 4.1 in CC provides uniform Bahadur representation and uniform Gaussian process strong

approximation

sup
(x,v)∈ϒ

∣∣∣∣∣
√

n
(
π̂(x, v)− π(x, v)

)
σ̂ (x, v)

− Zπn (x, v)

∣∣∣∣∣ = op(1).

Proof of Lemma 5: Note 1S′i = (0, 0′(dx×1), 1, X ′i )
′, β = (a0(v), a′1(v), a2(v), a′3(v))

′, and

β̂ = (â0(v), â′1(v), â2(v), â′3(v))
′. We show that (v, β) 7→ Gn1miχ i =

√
n
∑n

i=1

(
1miχ i −

E
[
1miχ i

] )
is stochastic equicontinuous over V × B, with respect to the L2(P) pseudometric

ρ((v1, β1), (v2, β2))
2 = E

[(
1m(X i , v1)(1(1S′iβ1 ≥ 0)−1m(X i , v2)1(1S′iβ2 ≥ 0)

)2]
.

Following the proof of Theorem 3 in Section A.1.2 in the appendix of ACF, letF =
{
1(1S′iβ >

0), β ∈ B
}

that is a VC subgraph class and hence a bounded Donsker class. F1m(X, v) is

Donsker with a square-integrable envelop |1m(X, v)| by Theorem 2.10.6 in Van der Vaart and
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Wellner (1996).

By stochastic equicontinuity of (v, β) 7→ Gn1miχ i , n−1/2
∑n

i=11mi

(
χ̂ i − χ i

)
=

√
nE
[
1mi

(
χ̂ i − χ i

)]
+ op∗(1) =

∂
∂αE

[
1m(X i , v)1(1S′iα ≥ 0)

]′∣∣
α=β(v) ×

√
n(β̂(v) − β(v)) +

op∗(1) uniformly over v ∈ V , which follows from ‖β̂(v)− β(v)‖ = op∗(1), and resulting conver-

gence with respect to the pseudometric supv∈V ρ((v, β̂(v)), (v, β(v)))
2 = op(1). The latter is from

ρ((v, β), (v, B))2 = E
[
1m(X i , v)

2(1(1S′iβ ≥ 0)−1(1S′i B ≥ 0))2
]
= O

(
∂
∂αE

[
1m(X i , v)

21(1S′iα

≥ 0)
]∣∣′
α=β(B − β)

)
for β, B ∈ B, which we show below.

We can rewrite 1(1S′iβ ≥ 0) − 1(1S′i B ≥ 0) = 1(1S′iβ ≥ 0,1S′i B < 0) − 1(1S′iβ <

0,1S′i B ≥ 0), and hence
(
1(1S′iβ ≥ 0) − 1(1S′i B ≥ 0)

)2
= 1(1S′iβ ≥ 0,1S′i B < 0) +

1(1S′iβ < 0,1S′i B ≥ 0). By symmetry, we focus on the second term. We can write 1(1S′iβ <

0,1S′i B ≥ 0) = (1(1S′i B ≥ 0)−1(1S′iβ ≥ 0))1(1S′i (B−β) ≥ 0). ThenE
[
1m(X i , v)

2(1(1S′i B

≥ 0)− 1(1S′iβ ≥ 0))1(1S′i (B − β) ≥ 0)
]
≤ E

[
1m(X i , v)

2(1(1S′i B ≥ 0)− 1(1S′iβ ≥ 0))
]
=

∂
∂αE

[
1m(X i , v)

21(1S′iα ≥ 0)
]∣∣′
α=β̄(B − β), where β̄ is between β and B by the mean value

theorem.

n−1/2
∑n

i=1 l−1
∑
v∈V (l) 1mi

(
χ̂ i − χ i

)
= l−1

∑
v∈V (l)

∂
∂αE

[
1m(X i , v)1(1S′iα ≥ 0)

]′∣∣
α=β(v)

×
√

n(β̂(v)− β(v))+ op∗(1) = n−1/2
∑n

j=1

∫ 1

0
∂
∂αE

[
1m(X i , v)1(1S′iα ≥ 0)

]′∣∣
α=a(v)

φ j (v)dv

+op∗(1) by Lemma 6.

The same arguments yield the result in 2. by replacing 1m with 1q.

Proof of Lemma 6: Let V(x) = {v ∈ V 1q(x, v) > 0}. The approximation error of Riemann

sum is supx∈X
∣∣l−1

∑
v∈V (l)∩V(x) f (x, v)−

∫
V(x) f (x, v)dv

∣∣
= O

(
supx∈X l−1

∑
v j∈V (l)

(
supv∈(v j−1,v j )

f (x, v)− infv∈(v j−1,v j ) f (x, v)
))

= O
(

supx∈X l−1 supP∈P
∑n P

j=0

∣∣ f (x, v j )− f (x, v j−1)
∣∣) = O(l−1),where the set of all partitions

P =
{

P = {v0, . . . , vn P
} ⊂ V

}
.

Proof of Theorem 5: Decompose π̂DR,K−πDR,K =
∑K

k=1 λ̂kπ̂ k−λkπ k =
∑K

k=1(λ̂k−λk)π k+

λk(π̂ k − π k)+ Op((λ̂k − λk)(π̂ k − π k)).

Let nk =
∑n

i=1 Dk
i . By the proof of Theorem 4,

∑K
k=1 λk(π̂ k − π k) =

∑K
k=1 λk(nk +
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nk−1)
−1
∑n

i=1(D
k
i + Dk−1

i )Rk
i /Bk + op(n

−1/2) = n−1
∑n

i=1

∑K
k=1 λk

(Dk
i
+D

k−1
i

)Rk
i

(pk+pk−1)Bk + op(n
−1/2),

where Rk
i = Rk

1i
+ Rk

2i
+ R3i ,

Rk
1i =

∫ 1

0

(
E(∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0 − π

DR1S)

sgn(X, v)(Dk + Dk−1)+
∂

∂α
E
[(
1m(X, v)− πDR1q(X, v)

)(
1(1S′α ≥ 0)

− 1(1S′α ≤ 0)
)
(Dk + Dk−1)

]∣∣
α=a(v)

)′
φk

i (v)dv/(pk + pk−1),

with φk
i (v) = ϑk(v)

−1
(
1(Ti ≤ S′i ak(v))− v

)
Si ,

ϑk(v) = E
[

fT |X,Z (S
′ak(v)|X, Z)SS′(Dk + Dk−1)

]
/(pk + pk−1),

S1i = (1, X ′i , 1, X ′i )
′, S0i = (1, X ′i , 0, 0′(dx×1))

′,1Si = S1i − S0i ,

Rk
2i = D′kG−1

k ψ J (X i , Ti , Zi )ei ,

with Gk = E
[
e2ψ J (X, T, Z)ψ J (X, T, Z)′(Dk + Dk−1)

]
/(pk + pk−1),

Dk =

∫ 1

0

E
[
(ψ J (X, q1(X, v), 1)− ψ J (X, q0(X, v), 0))sgn(X, v)

× (Dk + Dk−1)
]
dv/(pk + pk−1),

R3i =

∫ 1

0

(
1m(X i , v)− π

DR1q(X i , v)
)

sgn(X i , v)dv,

Bk =

∫ 1

0

E
[
|1q(X, v)|1(|1q(X, v)| ≥ 0)(Dk + Dk−1)

]
dv/(pk + pk−1). (S.13)

Next we analyze
∑K

k=1(λ̂k − λk)π k . Let Ak = Qk Pk , where Qk = qk − qk−1 and Pk =∑K
l=k pl(ql − E [T ]). Let λk = Ak/B, where B =

∑K
k=1 Ak . So πDR,K =

∑K
k=1 π kAk/B. Then∑K

k=1(λ̂k − λk)π k =
∑K

k=1

{
(Âk − Ak)/B − (B̂ − B)Ak/B

2
}
π k + op(n

−1/2) =
∑K

k=1(Âk −

Ak)(π k − πDR,K )/B+ op(n
−1/2).

Decompose Âk − Ak = (Q̂k − Qk)Pk + (P̂k − Pk)Qk + op(n
−1/2). It is straightforward

to show that q̂k − qk = n−1
∑n

i=1

{
(Ti Dk

i − E
[
Ti Dk

i

]
)/pk − (Dk

i − pk)qk/pk

}
+ op(n

−1/2) =

n−1
∑n

i=1(Ti − qk)D
k
i /pk + op(n

−1/2).
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P̂k − Pk =
∑K

l=k

{
( p̂l − pl)(ql − E [T ]) + pl

(
q̂l − ql − T̄ + E [T ]

)}
+ op(n

−1/2) =

n−1
∑n

i=1

∑K
l=k

{
(Dli − pl)(ql − E [T ]) + pl

(
(Ti − ql)Dli/pl − Ti + E [T ]

)}
+ op(n

−1/2) =

n−1
∑n

i=1

∑K
l=k

(
Dli − pl

)(
Ti − E [T ]

)
− Pk + op(n

−1/2).

Therefore
∑K

k=1(λ̂k − λk)π k =
∑K

k=1(Âk − Ak)(π k − πDR,K )/B+ op(n
−1/2) =

n−1
∑n

i=1

∑K
k=1 R4ki + op(n

−1/2), where

Rk
4i =

{(
(Ti − qk)

Dk
i

pk

− (Ti − qk−1)
Dk−1

i

pk−1

)
K∑

l=k

pl(ql − E [T ])+ (qk − qk−1)

(Ti − E [T ])
K∑

l=k

(
Dli − pl

)} π k − πDR,K∑K
k=1(qk − qk−1)

∑K
l=k pl(ql − E [T ]).

. (S.14)

By Rk
i given in (S.13) and Rk

4i
given in (S.14), we obtain the influence function

RK i =
K∑

k=1

λk

(Dk
i + Dk−1

i )Rk
i

(pk + pk−1)Bk
+ Rk

4i . (S.15)

Asymptotic normality follows the same arguments in the proof of Theorem 4 with the fol-

lowing modifications. The law of iterated expectations yields σ 2
K n = σ 2

K 1 + σ
2
K 2n
+ σ 2

K 3,

where σ 2
K 1 = E

[(∑K
k=1 λk

(Dk
i
+D

k−1
i

)Rk
1i

(pk+pk−1)Bk + Rk
4i

)2
]

, σ 2
K 2n
= E

[(∑K
k=1 λk

(Dk
i
+D

k−1
i

)Rk
2i

(pk+pk−1)Bk

)2
]

, and

σ 2
K 3 = E

[(∑K
k=1 λk

(Dk
i
+D

k−1
i

)R3i

(pk+pk−1)Bk

)2
]

.

S.6 Estimation and inference without covariates

This section presents nonparametric estimation and inference for the case without covariates, build-

ing on the results of the general case with covariates discussed in Section 4 in the main text.

Consider the quantile regression model for the conditional u quantile of T given Z = z, defined

as qz (u) = a0(u)+ za1(u). Additionally, let the nonparametric model for the conditional mean of

Y given Z and T be mz(t) = g0(t)+ zg1(t), where gz , z = 0, 1, are some unknown functions.

Step 1. Estimate the first-stage conditional treatment quantiles qz(u): q̂z(u) = â0(u)+ zâ1(u) for

u ∈ U(l), where U(l) = {u1, u2, ..., ul} is the set of equally spaced quantiles over (0, 1).
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Then 1q̂(u) = â1(u).

Step 2. Estimate the conditional mean function mz(t) by a series estimator: m̂z(t) = ĝ0(t) +

zĝ1(t). Let 1m̂(u) = m̂1(̂q1(u))− m̂0(̂q0(u)).

Step 3. For u ∈ U(l), the plug-in estimator of τ(u) is τ̂ (u) = 1m̂(u)/1q̂(u).

Estimate τ DR: τ̂ DR =
∑

u∈U (l) τ̂ (u)ŵ(u), where ŵ(u) = |1q̂(u)|/
∑

u∈U (l) |1q̂(u)|.

For the series estimator, let ψ J (t, z) =
(
ψ J1(t), ..., ψ J J (t), zψ J1(t), ..., zψ J J (t)

)′
, a 2J × 1

vector, and 9 = (ψ J (T1, Z1), ..., ψ
J (Tn, Zn))

′, a n × 2J matrix. Then the series coefficient

estimate is ĉ = (9 ′9)−19 ′(Y1, ..., Yn)
′, and a series least squares estimator of mz(t) is m̂z(t) =

ψ J (t, z)′ĉ.

Let the sieve variance estimator for τ̂ (u) be σ̂ 2(u) = 1ψ̂(u)′0̂1ψ̂(u)/1q̂(u)2, where1ψ̂(u) =

ψ J (q̂1(u), 1)− ψ J (q̂0(u), 0) and 0̂ given in Section S.7 is a consistent estimator for 0 defined in

S.3 by removing X i .

Theorem 7. Let Assumptions A1-A3 hold without X. Then
√

n(τ̂ (u)− π(u))/σ̂ (u)
d
−→ N (0, 1)

uniformly for u ∈ ϒ = {u ∈ U |1q(u)| ≥ 0}.

Similarly as Theorem 4, Theorem 8 shows that the influence function of τ̂ DR
is given by

Ri/B = (R1i + R2i )/B. The exact formulas of Rki , k = 1, 2, are given in (S.17) in the proof.

Theorem 8. Let Assumptions A1, A2, and A3 hold without X. Let
√

nl−1 = o(1). Then
√

n
(
τ̂ DR−

τ DR
)
/σ̂ = n−1/2

∑n
i=1 Ri/(Bσ n)+ op(1)

d
−→ N (0, 1).

Notation for Theorems 7 and 8:

φi (u) = ϑ(u)
−1
(
1(Ti ≤ S′i a(u))− v

)
Si

Si = (1, Z)′, S1 = (1, 1)′, S0 = (1, 0)′,1S = S1 − S0 = (0, 1)′

∂tmz(qz(u)) =
∂

∂t
mz(t)|t=qz(u)

qz = qz(u), q̂z = q̂z(u)
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1q = 1q(u) = q1 − q0 = (S1 − S0)
′a(u) = 1S′a(u)

1q̂ = 1q̂(u) = q̂1 − q̂0 = (S1 − S0)
′â(u) = 1S′â(u)

1ψ = 1ψ(u) = ψ J (q1(u), 1)− ψ J (q0(u), 0)

1ψ̂ = 1ψ̂(u) = ψ J (q̂1(u), 1)− ψ J (q̂0(u), 0)

1m = 1m(u) = m1(q1(u))− m0(q0(u))

1m̂ = 1m̂(u) = m̂1(q̂1(u))− m̂0(q̂0(u)) = 1ψ̂
′
ĉ

1m̌ = 1m̌(u) = m̂1(q1(u))− m̂0(q0(u)) = 1ψ
′ĉ

χ = χ(u) = 1(|1q(u)| ≥ 0|)

χ± = χ±(u) = 1(±1q(u) ≥ 0|)

Lemma 7 shows that the estimation error of the sign function is op(1/
√

n). In contrast,

Lemma 5 shows that with X , the estimation error of the sign function depends on the tail dis-

tribution of 1m(X, T ).

Lemma 7. Let Assumption A1 hold. Let
√

nl−1 = o(1). Then l−1
∑

u∈U(l) 1m(u)
(
χ̂+(u) −

χ+(u)
)
= op(1/

√
n) and l−1

∑
u∈U(l) 1q(u)

(
χ̂+(u)− χ+(u)

)
= op(1/

√
n).

Proof of Theorem 7: The proof follows the proofs of Theorem 6 by removing X . So the es-

timation error of q̂z(u) in Step 1 is of smaller order than the estimation error in Step 2, i.e., the

first-order asymptotic distribution of τ̂ (u) is as if qz(u) was known. Particularly for Step 2, de-

fine Zn ∼ N (0,0) and Zτn(u) =
1ψ(u)′

1q(u)σ n(u)
Zn. Lemma 4.1 in CC provides uniform Bahadur

representation and uniform Gaussian process strong approximation

sup
u∈ϒ

∣∣∣∣∣
√

n
(
τ̂ (u)− τ(u)

)
σ̂ (u)

− Zτn(u)

∣∣∣∣∣ = op(1).

Proof of Theorem 8: The proof follows the proof of Theorem 4 for τ DR by removing X . In

particular, define A+ and A− as A± =
∫ 1

0
1m(u)χ±(u)du. So A = A+ − A− =
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∫ 1

0
1m(u)/1q(u)

(
1q(u)1(1q(u) ≥ 0)−1q(u)1(1q(u) ≤ 0)

)
du =

∫ 1

0
τ(u)|1q(u)|1(|1q(u)| ≥

0)du.

Define B+ and B− as B± =
∫ 1

0
1q(u)χ±(u)du. By a similar argument as A, we can show

that B = B+ − B−. Therefore, τ DR = A/B and τ DR
± = A±/B±. Linearize τ̂ DR − τ DR =

( Â − A)/B − (B̂ − B)τ/B + Op

(
| Â − A||B̂ − B|/B2 + |B̂ − B|2/B2

)
.

The proof focuses on Â+, the estimator of A+. The same arguments apply to B̂+, the estimator

of B+. The same arguments apply to τ̂ DR
− and hence τ̂ DR

. Write τ̂ DR
+ = Â+/B̂+, where Â+ =

1
l

∑
u∈U(l) 1m̂(u)χ̂+(u) and B̂+ =

1
l

∑
u∈U(l) 1q̂(u)χ̂+(u).

In the following, we suppress the subscripts of + and superscripts of DR for expositional sim-

plicity. Linearize τ̂−τ = ( Â−A)/B−(B̂−B)τ/B+Op

(
| Â − A||B̂ − B|/B2 + |B̂ − B|2/B2

)
.

Let Ã = l−1
∑

u∈U(l) 1m̂(u)χ(u) for a known sign function. Decompose Â − A = Â − Ã +

Ã − A. The estimation error in 1m̂.

Ã − A =
1

l

∑
u∈U(l)

(
1m̂(u)−1m(u)

)
χ(u)+

1

l

∑
u∈U(l)

1m(u)χ(u)− A, (S.16)

where the second term is op(n
−1/2) by Lemma 6 and assuming

√
nl−1 = o(1). We focus on the

first term next. Decompose 1m̂ −1m =
(
1m̂ −1m̌

)
+
(
1m̌ −1mi

)
. The first part is for Step

1 estimation error, and the second part is for Step 2 estimation error.

Step 1 Theorem 3 in ACF shows that â(u)−a(u) = n−1
∑n

i=1 φi (u)+op(n
−1/2) uniformly over

u ∈ U(l) and converges in distribution to a zero mean Gaussian process indexed by u. Decompose

1m̂ −1m̌

= m1(q̂1)− m1(q1)− (m0(q̂0)− m0(q0))+ so1

= ∂tm1(q1)(q̂1 − q1)− ∂tm0(q0)(q̂0 − q0)+ so1+ so2

= ∂tm1(q1)S1(â(u)− a(u))− ∂tm0(q0)S0(â(u)− a(u))+ so1+ so2,
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where (We suppress the subscript i for simplicity.)

so1 = m̂1(q̂1)− m1(q̂1)−
(
m̂0(q̂0)− m0(q̂0)

)
−
(
m̂1(q1)− m1(q1)

)
+
(
m̂0(q0)− m0(q0)

)
= Op

(
‖∂t m̂z − ∂tmz‖∞‖q̂z − qz‖∞

)
,

so2 = Op

(
∂2

t m1

(
q̂1 − q1

)2
+ ∂2

t m0

(
q̂0 − q0

)2)
= Op(‖q̂z − qz‖

2
∞),

as ∂2
t mz is uniformly bounded by Assumption A3. ACF and Corollary 3.1(ii) in CC implies

that so1 + so2 = Op(‖q̂z − qz‖∞‖∂t m̂z − ∂tmz‖∞ + ‖q̂z − qz‖2∞) = Op(n
−1/2(J−(p−1) +

J
√
(J log J )/n)+ n−1) = op(n

−1/2) uniformly over u ∈ U , by assuming J
√
(J log J )/n = o(1)

and p > 1. Then
√

nl−1
∑

u∈U(l)(1m̂ −1m̌)χ

=
1

l

∑
u∈U(l)

(∂tm1(q1)S
′
1χ
√

n(â(u)− a(u))− ∂tm0(q0)S
′
0χ
√

n(â(u)− a(u))+ op(1)

=
1
√

n

n∑
j=1

1

l

∑
u∈U(l)

(∂tm1(q1)S1 − ∂tm0(q0)S0)
′ χφ j (u)+ op(1)

=
1
√

n

n∑
j=1

∫ 1

0

(∂tm1(q1)S1 − ∂tm0(q0)S0)
′ χφ j (u)du + op(1),

where the second equality is by ACF, and the last equality is by Lemma 6 and
√

nl−1 = o(1).

By Lemma 6 and assuming
√

nl−1 = o(1), l−1
∑

u∈U(l)(1m̌ − 1m)χ =
∫ 1

0
1m̌χdu − A +

op(n
−1/2).

Note that A is based on a linear functional of m, L(m) =
∫ 1

0
mz(qz(u))1(1q(u) > 0)du. So

we use the results on linear functionals of a sieve estimator in CC. Let σ 2
A2n
= E

[
R2

A2i

]
, where

RA2i = D+′G−1ψ J (Ti , Zi )ei and D+ =
∫ 1

0
1ψ J (u)χ+(u)du, with a consistent estimator σ̂ 2

A2.

Lemma 4.1 in CC provides

∣∣∣∣∣
√

n

σ̂ A2

(∫ 1

0

1m̌χdu − A

)
−

1

σ A2n

√
n

n∑
i=1

RA2i

∣∣∣∣∣ = op(1).
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The estimation error from the sign function Â − Ã = n−1
∑n

i=1 l−1
∑

u∈U(l) 1m(u)
(
χ̂(u) −

χ(u)
)
+ op(1/

√
n) by n−1

∑n
i=1 l−1

∑
u∈U(l)

(
1m̂(u) − 1m(u)

)(
χ̂(u) − χ(u)

)
= Op

(
‖1m̂ −

1m‖∞‖q̂z − qz‖∞
)
= op(n

−1/2). Together with Lemma 7(i),
∣∣√n( Â− A)− n−1/2

∑n
i=1 RAi

∣∣ =
op(1), where RAi = RA1i + RA2i with

RA1i =

∫ 1

0

(∂tm1(q1)S1 − ∂tm0(q0)S0)
′ χ+(u)φi (u)du,

By the similar arguments as for A in (S.16),

B̃ − B =
1

l

∑
u∈U(l)

(
1q̂(u)−1q(u)

)
χ(u)+

1

l

∑
u∈U(l)

1q(u)χ(u)− B,

where the second term is
∫ 1

0
1q(u)χ(u)du − B + op(n

−1/2) by Lemma 6, and the first term is

l−1
∑

u∈U(l) 1S′
(
â(u)− a(u)

)
χ = n−1

∑n
j=1 l−1

∑
u∈U(l) χ1S′φ j (u)+ op(n

−1/2)

= n−1
∑n

j=1

∫ 1

0
1S′χφ j (u)du + op(n

−1/2), by ACF and Lemma 6.

Together with Lemma 7(ii), we obtain
∣∣√n(B̂ − B)− n−1/2

∑n
i=1 RBi

∣∣ = op(1), where

RBi =

∫ 1

0

(
1S′χ+(u)+

∂

∂α

[
1q(u)1(1S′α ≥ 0)

]′ ∣∣
α=a(u)

)
φi (u)du.

By a linearization for τ̂ DR
+ , τ̂ DR

+ − τ
DR
+ =

Â+

B̂+
− A+

B+
= Â+−A+

B+
−

τ DR
+
B+
(B̂+ − B+)+ op(n

−1/2).

Therefore, we define R+i = RAi − τ DR
+ RBi = R+1i

+ R+2i
+ R+3i

, where R+1i
= RA1i − τ DR

+ RB1i

and R+2i
= RA2i . That is,

R+1i
=

∫ 1

0

(
∂tm1(q1(u))S1 − ∂tm0(q0(u))S0 − τ

DR
+ 1S

)′
χ+(u)φi (u)du,

R+2i
= D+′G−1ψ J (Ti , Zi )ei ,with D+ =

∫ 1

0

1ψ J (u)χ+(u)du.

Then we obtain τ̂ DR
+ −τ

DR
+ = n−1

∑n
i=1

(
RAi−τ DR

+ RBi

)
/B++op(n

−1/2) = n−1
∑n

i=1 R+i /B++

op(n
−1/2).

31



Asymptotic normality We suppress the subscripts of+ and superscripts of DR for expositional

simplicity. Because R2i depends on (Yi , Ti ) and R1i depends on Ti , the law of iterated expectations

yields σ 2
n =

(
E
[
R2

1i

]
+ E

[
R2

2i

])
/B2 = (σ 2

1 + σ
2
2n
)/B2.

We will show the Bahadur representation that

∣∣∣∣∣
√

n(τ̂ − τ)

σ̂
−

1
√

n

n∑
i=1

Ri

Bσ n

∣∣∣∣∣
≤

∣∣∣∣∣
√

n(τ̂ − τ)

σ n

−
1
√

n

n∑
i=1

Ri

Bσ n

∣∣∣∣∣+
∣∣∣∣√n(τ̂ − τ)

σ n

(σ n

σ̂
− 1

)∣∣∣∣ = op(1)

by (i) n−1/2
∑n

i=1 Ri/(Bσ n)
d
→ N (0, 1), and (ii) |σ n/σ̂ − 1| = op(1), as shown below.

(i) Asymptotic normality will follow from the Lyapunov central limit theorem with the third ab-

solute moment, n−1/2E|Ri |3/(Bσ n)
3→ 0, since {Ri }ni=1 are independent across i , with mean zero

and variance 1. By the assumed conditions, it is straightforward to show that n−1/2E|R1i |3/(Bσ 1)
3→

0. We show below that n−1/2E|R2i |3/(Bσ 2n)
3 → 0. Then it implies that all the cross-product

terms n−1/2E|R1i R2i |/(Bσ n)
3→ 0 and n−1/2E|R2

j i Rki |/(Bσ n)
3→ 0 for j, k = 1, 2, j 6= k.

Denote as ψ = ψ J (Ti , Zi ). By Assumption A2.2(ii),

σ 2
2n = E

[
R2

2i

]
/B2 = E

[
(D′G−1ψ)2e2

i

]
/B2 ≥ E

[
(D′G−1ψ)2

]
σ 2/B2 = D′G−1Dσ 2/B2.

By the Schwarz inequality and Assumption A2.3(ii),

(D′G−1ψ)2

σ 2
2n

≤
(D′G−1D′)(ψ ′G−1ψ)

σ 2
2n

≤
ζ 2

σ 2
.
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Then by Assumption A2.2(iii),

1
√

n
E

[
|R2i |3

B3σ 3
2n

]
=

1
√

n
E

[
|D′G−1ψei |3

B3σ 3
2n

]

=
1
√

n
E

[
(D′G−1ψ)2

B3σ 2
2n

|D′G−1ψ |

σ 2n

E
[
|ei |

3|Ti , Zi

]]

≤
ζ

√
nB3σ 3

sup
t,z
E
[
|ei |

3|X i = Ti = t, Zi = z

]
= O

(
ζ
√

n

)
= o(1).

(ii) It is straightforward that σ̂ 2
1 = n−1

∑n
i=1 R̂2

1i
/B̂2 p
−→ σ 2

1 = E
[
R2

1i

]
/B2 and σ̂ 2

3

p
−→ σ 2

3.

The same arguments in Lemma G.4 in CC give |σ 2n/σ̂ 1−1| = Op(δV,n) = op(1). So |σ n/σ̂−1| =

op(1).

By (i) that n−1/2
∑n

i=1 Ri/(Bσ n) = Op(1) and (ii), the second term

∣∣∣√n(τ̂−τ)
σ̂

(
σ̂
σ n
− 1

)∣∣∣ =
Op(1)op(1) = op(1). We then obtain the Bahadur representation. The asymptotic normality

follows from the result (i).

Therefore, we obtain that when B+ > 0,
√

n
(
τ̂ DR
+ − τ

DR
+

)
/σ̂ n+ = n−1/2

∑n
i=1 R+i

/(B+σ n+)+ op(1)
d
−→ N (0, 1), where σ̂ 2

+ is a consistent estimator of σ 2
n+ = E

[
R+2

i

]
/B2
+.

For τ DR
− , define

R−1i
=

∫ 1

0

(
E
[(
∂tm1(q1(u))S1 − ∂tm0(q0(u))S0 − τ

DR
− 1S

)
χ−(u)

]
+
∂

∂α
E
[(
1m(u)− τ DR

+ 1q(u)
)

1(1S′α ≤ 0)
] ∣∣
α=a(u)

)′
φi (u)du.

Define R−i as R+i by replacing + with − in all the components in R+i . By the same arguments for

τ DR
+ , we obtain that when B− > 0,

√
n
(
τ̂ DR
− −τ

DR
−

)
/σ̂− = n−1/2

∑n
i=1 R−i /(B−σ n−)+op(1)

d
−→

N (0, 1), where σ̂ 2
− is a consistent estimator of σ 2

n− = E
[

R−2
i

]
/B2
−, such that |σ n−/σ̂− − 1| =

op(1).

For τ DR , the same linearization yields τ̂ DR−τ DR = ( Â− A)/B− (B̂− B)τ DR/B+Op

(
| Â−

A||B̂ − B|/B2 + |B̂ − B|2/B2
)
. Let Ri = R+i − R−i = R1i + R2i + R3i , where Rli = R+li − R−li
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for l = 1, 2 by replacing τ DR
+ and τ DR

− with τ DR . Specifically, let sgn(u) = 1(1q(u) ≥ 0) −

1(1q(u) ≤ 0),

R1i =

∫ 1

0

E
[
(∂tm1(q1(u))S1 − ∂tm0(q0(u))S0 − τ

DR1S)sgn(u)
]′
φi (u)du,with

φi (u) = ϑ(u)
−1
(
1(Ti ≤ S′i a(u))− v

)
Si , S1 = (1, 1)′, S0 = (1, 0)′,1S = S1 − S0 = (0, 1)′,

R2i = D′G−1ψ J (Ti , Zi )ei ,with D =
∫ 1

0

E
[
(ψ J (q1(u), 1)− ψ J (q0(u), 0))sgn(u)

]
du. (S.17)

Proof of Lemma 7: By Markov inequality, for any δ > 0, P(|
√

n
∫ 1

0
1m(u)(1(1S′α̂ ≥ 0) −

1(1S′α ≥ 0))| ≥ δ) ≤ En
∫ 1

0
|1m(u)|2(1(1S′α̂ ≥ 0)− 1(1S′2/δ2 ≤ En

∫ 1

0
|1m(u)|2

×(1(1S′α̂ ≥ 0,1S′α < 0) − 1(1S′α̂ < 0,1S′2/δ2 ≤ En
∫ 1

0
|1m(u)|2(1(1S′α̂ ≥ 0,1S′α <

0)+ 1(1S′α̂ < 0,1S′α ≥ 0))/δ2 ≤

En
∫ 1

0
|1m(u)|21(|1S′(α̂−α)| > |1S′α|)/δ2 ≤ n

∫ 1

0
|1m(u)|2E1(|1S′

√
n(α̂−α)| >

√
n|1S′α|)/δ2

= Op(n28(−
√

n|1S′α|)) = op(1), where8 is the CDF ofN (0, 1), assuming
∫ 1

0
|1m(u)|2du <

∞.

The same arguments yield the result for 1q by replacing 1m with 1q.

S.7 Variance Estimation

For convenience, we first collect the relevant notations and then discuss implementation details.

S.7.1 Notation:

Let φi (v) = ϑ(v)
−1
(
1(Ti ≤ S′i a(v))−v

)
Si . Let the positive sign function χ+(x, v) = 1(1q(x, v) ≥

0). Let S1i = (1, X ′i , 1, X ′i )
′, S0i = (1, X ′i , 0, 0′(dx×1))

′, 1Si = S1i − S0i , ∂tmz(X, qz) =

∂
∂t

mz(X, t)|t=qz(X,v).
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R+1i
=

∫ 1

0

(
E
[(
∂tm1(X, q1(X, v))S1 − ∂tm0(X, q0(X, v))S0 − π

DR
+ 1S

)
χ+(X, v)

]
+
∂

∂α
E
[(
1m(X, v)− πDR

+ 1q(X, v)
)

1(1S′α ≥ 0)
] ∣∣
α=a(v)

)′
φi (v)dv,

R+2i
= D+′G−1ψ J (X i , Ti , Zi )ei ,with G ≡ E

[
ψ J (X, T, Z)ψ J (X, T, Z)′

]
= E

[
9 ′9/n

]
,

D+ = D+1 −D
+
0 ,D

+
z =

∫ 1

0

E
[
ψ J (X, qz(X, v), z)χ+(X, v)

]
dv,

R+3i
=

∫ 1

0

(
1m(X i , v)− π

DR
+ 1q(X i , v)

)
χ+(X i , v)dv,

B+ =

∫ 1

0

∫
X
1q(x, v)χ+(x, v) f (x)dxdv.

Let χ−(x, v) = 1(1q(x, v) < 0) and B− =
∫ 1

0

∫
X 1q(x, v)χ−(x, v) f (x)dxdv. Let B =

B+ − B−.

For πDR
− , define R−i as R+i by replacing + with − in all the components in R+i .

For πDR , define Ri = R1i + R2i + R3i , where Rki = R+ki − R−ki for k = 1, 2, 3 except that one

needs to replace πDR
+ and πDR

− with πDR in R+ki and R−ki , k = 1, 3.

S.7.2 Implementation

We estimate σ 2 by the sample analogue plug-in estimator, i.e., σ̂ 2 = σ̂ 2
1 + σ̂

2
2 + σ̂

2
3, where σ̂ 2

k =

n−1
∑n

i=1 R̂2
ki/B̂2, B̂ and R̂ki are consistent estimators for B and Rki for k = 1, 2, 3, respectively,

given in (S.10):

For R̂1i , ∂t m̂z is directly computed from Step 2. From the linear quantile regression literature, it

is standard ϑ̂(v) = n−1
∑n

i=1 f̂T |X,Z (S
′
i â(v)|X i , Zi )Si S′i . The derivative ∂

∂αE
[
1m(X, v)1(1S′iα ≥

0)
]∣∣
α=a(v)

may be estimated by a numerical differentiation, i.e., n−1
∑n

i=11m̂(X i , v)
(
1(1S′i (â(v)+

ι/2) ≥ 0)− 1(1S′i (â(v)− ι/2) ≥ 0)
)/
ι for some small ι > 0.

For R̂2i , let êi = Yi − ψ J (X i , Ti , Zi )
′ĉ, �̂ = n−1

∑n
i=1 ê2

i ψ
J (X i , Ti , Zi )ψ

J (X i ,

Ti , Zi )
′, Ĝ = 9 ′9/n, and 0̂ = Ĝ−1�̂Ĝ−1. Let D̂+ = n−1

∑n
i=1 l−1

∑
v∈V (l) ψ̂

J

i

χ̂+(X i , v). Let D̂ = D̂+ − D̂−. Then σ̂ 2
2n = D̂′0̂D̂, σ̂ 2

+2 = D̂+
′
0̂D̂+, and σ̂ 2

−2 = D̂−
′
0̂D̂−.
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R̂+3i
= l−1

∑
v∈V (l)

(
1m̂(X i , v)− π̂

DR
+ 1q̂(X i , v)

)
χ̂+(X i , v), and B̂+ is analogous.
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