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SUMMARY

Many empirical applications of regression discontinuity (RD) models use a running variable that is rounded
and hence discrete, e.g. age in years, or birth weight in ounces. This paper shows that standard RD estimation
using a rounded discrete running variable leads to inconsistent estimates of treatment effects, even when the true
functional form relating the outcome and the running variable is known and is correctly specified. This paper
provides simple formulas to correct for this discretization bias. The proposed approach does not require
instrumental variables, but instead uses information regarding the distribution of rounding errors, which is easily
obtained and often close to uniform. Bounds can be obtained without knowing the distribution of the rounding
error. The proposed approach is applied to estimate the effect of Medicare on insurance coverage in the USA,
and to investigate the retirement-consumption puzzle in China, utilizing the Chinese mandatory retirement
policy. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Regression discontinuity (RD) models identify local average treatment effects by associating a discrete
change in the treatment probability with a corresponding discrete change in the mean outcome when
a continuous running variable crosses a known threshold. The RD treatment effect is given by the
ratio of these two discrete changes. In the case of a sharp RD design, where the treatment probability
changes by 1 at the threshold, the RD treatment effect is simply the difference in the mean outcome of
interest just above and just below the threshold.

Many empirical applications of regression discontinuity methods use a running variable that is
rounded and hence involves rounding or discretization errors. Examples of rounded and hence discrete
running variables include age in years, birth weight in ounces, an integer-valued test score, calendar
year or quarter, etc. Rounding issues exist frequently due to data limitation in survey datasets. For
example, many survey datasets only report an individual’s age in years at the time of the survey. in this
case the reported age is thus an individual’s actual age rounded down to the nearest integer. Similar to
age in years, calendar year or similarly quarter involves rounding down to the nearest integer, whereas
an integer test score or birth weight in ounces typically involves ordinary rounding, i.e. the true birth
weight or test score is rounded either up or down to the nearest integer.

Barreca et al. (2010, 2011) note that birth weight tends to heap at ounce or 100 g multiples, possibly
due to the limited resolutions of scales. Their Monte Carlo simulations show that standard RD anal-
ysis arrives at biased estimates when the running variable displays heaps. They therefore recommend
dropping observations at the heaping points, and only use the remaining continuous birth weight data
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as a way to reduce the bias. However, as they have noted, data heaps may comprise a large share of
the data, and one may be interested in knowing the treatment effect for the heaped type, which tends
to be associated with different quality of hospitals (and hence different treatment) as well as different
family backgrounds from the continuous type. This paper’s approach might be applied to heaped birth
weight data to correctly estimate the RD treatment effect.

In addition, many survey datasets report income in brackets. One way to use bracket data is to
include a separate dummy variable for each bracket in a regression. This is essentially a functional
form assumption that is made not for economic plausibility but just to accommodate the limitations
of data reporting. More commonly, interval censoring is ignored, and income is just imputed as the
midpoint of each bracket. This imputation causes rounding errors, resulting in estimation bias. As
long as the true model depends on the underlying continuous income measure rather than interval
dummies, this paper’s approach may be applied to deal with the rounding error bias resulting from
interval censoring.

RD models crucially rely on the continuity of the running variable for identification. In
particular, identification is achieved by shrinking the bandwidth to zero in the limit and hence
essentially compares outcomes for observations ‘just above’ and ‘just below’ the treatment threshold.
As noted by Lee and Card (2008), when the observed running variable X is rounded and hence is dis-
crete, it is impossible to shrink the bandwidth to zero to compare units just above and just below the
threshold (since there are no observations ‘just below’ the threshold regardless of the sample size).
Identification in this case has to rely on extrapolation based on functional form. Essentially, the RD
treatment effect is not nonparametrically identified in this case. Standard practice is therefore to esti-
mate parametric regressions of Y on reported age X (generally low-order polynomial models; see, for
example, Card and Shore-Sheppard, 2004; DiNardo and Lee, 2004; Lee, 2008) above and below the
RD treatment threshold.

Although using a rounded discrete running variable has been common in RD applications due to the
limitation of many survey datasets, very few studies directly address this issue. This paper contributes
to the growing RD literature by providing an easy and practical way to test and correct the rounding
bias caused by using a rounded discrete running variable. This paper uses age in years as a leading
motivating example and focuses on the case of rounding down first. The results are then extended to
cases involving non-integer cutoffs or other common forms of rounding, such as ordinary rounding or
rounding up to the nearest integer. Unlike the case of rounding down, these other cases may involve
misclassification of falling on either side of the threshold.

I first show that the standard method for dealing with a rounded discrete running variable leads to
inconsistent estimates of the RD treatment effect, even if the true functional form relating the outcome
to the running variable is known and is correctly specified. This inconsistency exists for similar reasons
that measurement errors in regressors yield biased and inconsistent estimates of regression coefficients,
even when the functional form of the regression is correctly specified. In this case the observed rounded
running variable can be taken as a mismeasure of the true exact running variable.

I next provide a formula for the size of the bias in the standard RD model estimators that use a
rounded running variable based on rounding down, and describe the restrictive conditions under which
this bias will be zero. For example, a sufficient condition for the rounding or discretization bias to be
zero is that the slope and higher derivatives of the outcome as a function of age do not change at the
cutoff. The bias can be either positive or negative, depending on how the slope and higher derivatives
change at the threshold, so with a rounded running variable the data may reveal a larger or smaller
discontinuity than the true discontinuity.

I also show how to correct this rounding bias and thereby obtain consistent estimates of the true
RD treatment effect. These corrections are very simple to implement in practice, and it is also sim-
ple to obtain standard errors for the bias-corrected estimator of the treatment effect. Knowing exactly
when the rounding error matters might be useful in practice. For example, if the correction does not
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make much difference, one can be assured that obtaining a more refined measure of the running vari-
able would not significantly change one’s estimates. These bias formulas and resulting corrections
are not the same as the corrections for standard measurement error models.1 The t statistic on the
bias-corrected estimator provides a valid test for the presence of a true discontinuity, and hence a
non-zero true treatment effect.

A convenient feature of the proposed bias correction is that it does not require an instrument. It
instead assumes that one has some information regarding the distribution of the rounding error within
the discretized variable cell. In the case of age in years, the required information is moments of the
distribution of ages within a year, i.e. the distribution of birthdays for the underlying population the
data are drawn from, which is readily available from census data. Alternatively, in some applications
this distribution can be well approximated by a uniform distribution. I also briefly discuss how to
construct bounds on the true treatment effect based on this paper’s identification results. These bounds
do not rely on having any information regarding the distribution of the rounding error.

It is worth emphasizing that, although this paper’s results are discussed in the context of RD models,
they can be readily used in correcting for the bias in the estimated coefficients in ordinary regressions
when the true model depends on continuous regressors, but one has only available rounded, coarsened
or interval censored variables.

Two empirical applications are provided. The first looks at the effect of Medicare eligibility on
medical insurance coverage in the USA. For this application, a finer (monthly versus yearly) measure
of age is available. Estimates based on these monthly age data provide a benchmark. I show that
the proposed methodology works well and produces estimates that are consistent with having and
using data where age is more accurately measured. In particular, both the benchmark estimates and
the bias-corrected estimates imply that rounding leads to an overestimate of the impact of Medicare
eligibility on the medical insurance coverage rate. The bias-corrected estimates are similar to those
estimates using monthly age data and depart further from the uncorrected estimates based on age in
years. A bounds calculation confirms that rounding in this application leads to an overestimate of the
treatment effect, whatever the rounding error distribution may be. Interestingly, this is in opposite
direction of the usual attenuation bias that results from classical measurement error.

The second application investigates the retirement-consumption puzzle in China. The puzzle (see,
for example, Banks et al., 1998) refers to the empirical finding that, in many datasets of developed
Western countries, consumption (typically food consumption) drops significantly at retirement, which
is inconsistent with consumption smoothing by the standard life cycle model. In China, the official
retirement age for male workers is 60. This mandatory retirement rule yields a significant jump in the
retirement rate at age 60, which helps identify the true causal impact of retirement on various outcomes
of interest.

Since age is recorded in years in the available Chinese dataset, accurately estimating the retirement
impact using RD models requires correcting for the rounding bias. I show that the slope of the food
consumption profile changes substantially at the threshold age 60, resulting in a relatively large round-
ing bias. I find that there is a significant drop in food consumption at the retirement of male household
heads, but the drop is not as large as one would estimate from a standard RD analysis that ignores the
rounding bias.

The rest of the paper proceeds as follows. Section 2 briefly reviews the literature. Section 3 provides
the main identification result for the sharp design RD based on rounded and hence discrete data. Also
provided is a numerically simple correction to the standard discrete data RD estimation. Section 4
describes how to estimate the true RD treatment effect with rounded data. Section 5 extends the
approach to fuzzy design RD models. Sections 6 and 7 present two empirical applications. Sections 8

1 Classical measurement errors will lead to attenuation bias in estimated regression coefficients. With rounding errors, the
treatment effect can either be overestimated or underestimated.
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discusses some extensions to the basic setup. Short concluding remarks are provided in Section 9.
Proof of the main result is provided in the Appendix.

2. LITERATURE REVIEW

RD methods have gained great popularity in the treatment effect evaluation literature in recent years.
Recent surveys include Imbens and Lemieux (2008) and Lee and Lemieux (2010). Age is commonly
used as a running variable in RD applications. Examples include Behaghel et al. (2008), Card et al.
(2008, 2009), Carpenter and Dobkin (2009), Chen and van der Klaauw (2008), De Giorgi (2005),
Edmonds (2004), Edmonds et al. (2005), Ferreira (2010), Lalive et al. (2006), Lalive (2007, 2008),
Lee and McCrary (2005), Lemieux and Milligan (2008) and Leuven and Oosterbeek (2004). This
paper’s main results may also be similarly applied to RD applications with calender years as a running
variable. For example, Oreopoulos (2006) uses birth year as a running variable to estimate returns to
education in the UK.

One paper that specifically considers discreteness of an RD running variable is Lee and Card (2008).
They model deviations of the true regression function from a given approximating function, i.e. the
chosen parametric (e.g. polynomial) function for the discrete running variable, as random specification
errors. They then discuss the impact of these random specification errors on inference.

As noted by Lee and Card (2008), when the random specification errors are not identical for the
regressions above and below the cutoff, the true parameter of interest, i.e. the true RD treatment effect,
is not the same as the simple difference of the expected values of these two regressions at the cutoff.
In particular, the true treatment effect equals the latter plus the expected difference between the two
random specification errors at the cutoff.

If one interprets their specification errors as rounding errors due to discretization of the running
variable, then it can be shown that the expected difference between these two rounding errors is not
necessarily zero. In this paper, I show that under general conditions this bias term can be identified
and estimated, using moments of the distribution of the rounding error within the discretized cell.

A few existing papers deal with RD models in which the running variable is mismeasured with a
classical measurement error. Unlike rounding errors classical measurement errors are assumed to be
independent of the unobserved true running variable. With a continuous running variable, as required
by standard RD models, rounding errors cannot be classical.2 In particular, Pei (2011) discusses iden-
tification of the running variable distribution and the RD treatment effect under the assumption that
the true underlying running variable and the classical measurement error are discrete and bounded;
note that here the true running variable is continuous.

Battistin et al. (2009) deal with measurement error in the running variable in their empirical
application of an RD model. Their RD design exploits the Italian pension eligibility rule and is used
to investigate the retirement-consumption puzzle in Italy. The observed running variable (distance to
pension eligibility, constructed based on age and pension contribution years) is measured with error.
They show that, assuming a classical measurement error and assuming that the measurement error is
orthogonal to the treatment and the potential outcomes conditioning the true running variable, one can
estimate the RD treatment effect by the standard procedure ignoring the measurement error. In this
case, the numerator and the denominator of the fuzzy design RD treatment effect estimator are scaled
by the same factor, i.e. the fraction of individuals who correctly report their running variable among
all individuals near the eligibility threshold.

2 Let Z D Z� C u, where Z is the observed mismeasured variable, Z� is the true variable and u is the measurement error;
in the case of a classical measurement error, u is assumed to be independent of Z�. However, the rounding errors take on the
form X� D X C e, where X� is the unobserved true continuous running variable, and X is the observed rounded and hence
discrete variable. By construction, the rounding error e cannot be independent of the true variableX�.
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Hullegie and Klein (2010) also deal with the measurement error problem in the running variable
in an empirical application of an RD model. They estimate the effect of private insurance on health
care utilization and health in Germany. Private insurance eligibility is determined by income above a
certain threshold. Due to the potential measurement error in income, no discontinuity is observed in
private insurance probability at the qualifying income threshold. They assume a normally distributed
classical measurement error, which is independent of private insurance status and potential outcomes,
and then develop an estimator based on the distributional assumptions. For the effect of measurement
error in the general average treatment effect framework, one can refer to Battistin and Chesher (2011)
and references therein.

In addition, the biases associated with the use of interval data have been examined in the context
of standard regression models. Heitjan and Rubin (1991) present a general statistical model of data
coarsening, and establish that when data are coarsened at random coarsening can be ignored in drawing
Bayesian and likelihood inferences. Empirical studies confronting interval regressor data often set
observations equal to the midpoint of the interval, which is similar to ordinary rounding. Another
common practice is to use a set of dummy variables indicating falling in a particular interval. Hsiao
(1983) critiques these approaches as applied to linear regression models. Alternatively, discretization
or rounding leads to a loss of identification. Manski and Tamer (2002) provide bounds on model
parameters in regressions with one of the regressors being interval valued. Tsiatis (2006) reviews
estimation of semiparametric models with missing, censored and coarsened data.

3. IDENTIFICATION

Begin with the standard RD setup. I consider sharp design RD first, and later provide the straightfor-
ward extension to fuzzy designs. Let T be the indicator of treatment, so an individual has T D 1 if
treated and T D 0 otherwise. Let c denote the cutoff or threshold age for treatment, which is assumed
to be an integer. Let X� be an individual’s exact age at the time of the survey minus c, so X� is the
underlying continuous running variable.

Follow Rubin (1974) to let Y.1/ and Y.0/ denote an individual’s potential outcomes of interest
from being treated or not, respectively. The observed outcome Y can then be written as Y D Y .0/C
ŒY.1/ � Y.0/�T . An individual’s potential outcome can depend on X�. Define conditional means of
the potential outcomes conditioning on the true age as gt .X�/ D E.Y.t/ j X�/ for t D 0; 1. The
conditional mean of the observed outcome is thenE.Y j X�; T / D g0 .X�/C Œg1.X�/ � g0 .X�/� T .

Define the dummy indicating crossing the threshold as T � D I .X� � 0/, where I.�/ is the indicator
function that equals one if its argument is true and zero otherwise. Sharp design RD means that T D
T �, so for now an individual is assumed to be treated if and only if his true age equals or exceeds
the cutoff c. It follows that when X� � 0, g1.X�/ D E .Y j X�; T � D 1/ D E.Y j X�/ and when
X� < 0 , g0.X�/ D E .Y j X�; T � D 0/ D E .Y j X�/. By assuming continuity of g0 .X�/ and
g1 .X

�/ at the threshold point X� D 0, the standard sharp design RD local average treatment effect is
given by � D g1.0/ � g0.0/.

Outcomes could also depend on other covariates, which are suppressed for now. All the statements
and theorems in this paper can be assumed to hold conditioning on the values of other covariates,
though it should be noted that a generic virtue of the RD approach is that inclusion of other covariates
generally only affects efficiency but not consistency of estimated RD treatment effects.

Letbg1 .X�/ be a consistent estimator of g1 .X�/ forX� � 0, obtained by regressing Y onX� either
nonparametrically, or by a correctly specified parametric model, using observations of data having
X� � 0. Similarly, letbg0 .X�/ be a consistent estimator of g0 .X�/ for X� < 0. The sharp design RD
treatment effect � is consistently estimated byb� Dbg1.0/ �bg0.0/.

Now suppose one does not observe continuousX�. Instead, one observesX , defined asX� rounded
down to the nearest integer, i.e. X is an individual’s reported age in years minus c at the time of the
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survey. This X is what is usually available in survey datasets, since surveys typically report individu-
als’ age in (integer) years up to their most recent birthday at the time of the survey. The same analysis
can be applied for finer or coarser reporting of age; e.g. if age is recorded in months, then the same
analysis can apply by taking the units of X and X� as measured by month rather than by year.

Let h1.X/ D E .Y j X; T � D 1/ when X � 0 and that h0.X/ D E .Y j X; T � D 0/ when X <

0, so ht .X/ is the discrete data analog of gt .X�/ for t D 0; 1. By construction, E .Y j X; T / D
E .Y j X; T �/ D h0.X/ C Œh1.X/ � h0.X/� T

�. Let bh1.X/ be a consistent estimator of h1.X/ for
X � 0, obtained by regressing Y on X in a correctly specified parametric model using observations
of data having X � 0. Similarly letbh0.X/ be a consistent estimator of h0.X/ for X < 0, obtained by
regressing Y on X in a correctly specified parametric model using observations of data havingX < 0.

Suppose one were to ignore the fact that the reported data are rounded, and attempted to estimate
the RD treatment effect asbh1.0/ �bh0.0/ instead ofbg1.0/ �bg0.0/. Refer to this as the naive discrete
data RD treatment effect estimator and denote it byb� 0. Denote the probability limit ofb� 0 as � 0, which
is referred to as the naive discrete data RD treatment effect, so � 0 D h1.0/ � h0.0/.

If the discrete data RD treatment effect � 0 equals the true RD treatment effect � , i.e. � 0 D � , then the
naive discrete data estimatorb� 0 is a consistent estimator of the true RD treatment effect � , otherwiseb� 0 will be an inconsistent estimator of the true RD treatment effect. Define the bias in the discrete data
RD treatment effect as � 0 � � .

Access to only rounded age data will make local nonparametric estimation in the neighborhood of
the threshold impossible, because one does not observe data anywhere in the neighborhood of zero
except at zero itself. It will therefore be necessary to assume that one knows the parametric form of
the underlying model gt .X�/ for t D 0; 1.

Let e D X� � X , so e is the measurement error in the reported rounded age, and has 0 � e < 1.
Let �k D E

�
ek
�

be the kth non-central moment of the rounding error e.
I will follow the usual practice in the literature of specifying these models as polynomials with

possibly unknown but finite degrees. Polynomials are by far the most commonly used models in empir-
ical practice. Also, any sufficiently smooth (i.e. analytic) function can be approximated arbitrarily
well by a polynomial. Given the parametric model for the true continuous age, I then derive the cor-
responding specifications for the rounded age. It will follow from the assumptions below (as proved
in Corollary 1) that the correct specifications for h0.X/ and h1.X/ will also be polynomials. When
estimating these models, standard covariate selection tests can be employed to determine the degree
of these polynomials.

The following assumptions allow one to identify and consistently estimate the true RD local treat-
ment effect � using what one can identify from rounded data. Equivalently, these assumptions will
permit one to quantify and correct for the bias in the discrete data RD treatment effect � 0.

Assumption 1. T D I.X� � 0/.

Assumption 2. g0 .X�/ and g1 .X�/ are continuous at X� D 0.

Assumption 3. The conditional mean functions g0 .X�/ for X� < 0 and g1 .X�/ for X� � 0 are
polynomials of possibly unknown degree J .

Assumption 4. h0.X/ is identified for all � .J C 1/ � X < 0, and h1.X/ is identified for all 0 � X
� J .

Assumption 5. I.X � 0/ D I .X� � 0/.

Assumption 6. For all integers k � J , E
�
ek j X

�
D E

�
ek
�
D �k , and these J moments are

identified.
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Assumption 1 is the standard sharp design RD identifying assumption that treatment occurs if and
only if age exceeds the threshold c, and hence when X� crosses zero. Assumption 2 is the standard
identifying assumption of an RD design that the conditional means of the potential outcomes are
continuous at X� D 0, so the discontinuity in the observed conditional mean of Y at the threshold can
be attributed to the treatment.

Assumption 3 is a functional form restriction. As noted previously, unlike the standard RD, local
nonparametric estimation is not possible with rounded discrete data, so estimation requires some
assumed functional form. Note that Assumption 3 is an assumption only about observables, not coun-
terfactuals, and so could be tested (using, for example, a validation sample where true age X� is
reported). Assumption 3 can be easily extended to allow g0 .X

�/ and g1 .X�/ to be polynomials of
different degrees. For simplicity, I assume that they both are polynomials of degree J . One can take J
to be the maximum of the degree of these two polynomials.3

Assumptions 4, 5 and 6 are the only assumptions that are imposed on the observed age X (as
opposed to the true age X�). Assumption 4 says that one can identify the mean of Y in each observed
age cell X . So, for example, h1.X/ is just the mean of Y across everyone with reported age X above
the threshold.

Assumption 5 says that the crossing threshold indicator T �, when defined in terms of X rather than
X� is not mismeasured. This holds automatically for the type of rounding considered here, where the
observed age is the true age rounded down to the nearest integer and the cutoff c is also an integer.
This assumption may not hold for other types of rounding such as ordinary rounding or rounding up
to the nearest integer, which I will discuss separately in the extension Section 8.

Assumption 6 says that the moments of the rounding error e do not depend upon X , and that these
moments are identified. Later bounds will be derived in case these moments are not identified. In the
case of age, these are essentially moments of the distribution of birthdays within a year (among indi-
viduals in the population where the survey sample is drawn), so Assumption 6 will hold if birthdays
are uniformly distributed. In this case �k D

R 1
0 e

kde D 1= .k C 1/ is known. Note that, regard-
less of the distribution of e, all moments �k are finite, because e is bounded between zero and one
by construction.

There exists evidence of small but statistically significant seasonal departures from uniformity in
the distribution of births within a year (see, for example, Beresford, 1980; Murphy, 1996). However,
this seasonal variation appears to have very little impact on the lower-order moments �k . For exam-
ple, Murphy (1996) provides birthdays of 480,040 life insurance applicants. The first four empirical
moments �1 to �4 in his data are 0.506, 0.339, 0.254 and 0.203, which are numerically quite close to
the corresponding moments of a true uniform distribution, 0.500, 0.333, 0.250 and 0.200.4

Small departures from uniformity could also arise among very old populations, where those with
birthdays earlier in the year may be slightly underrepresented due to the higher mortality risk. How-
ever, even without assuming a uniform distribution, these distributions may be estimated using data
from other sources such as census data, so it is not restrictive to assume that moments from these
distributions are identified.

Recall that � D g1.0/ � g0.0/ is the true local RD treatment effect.

3 Intuitively, the difference between the ‘true’ treatment effect and the ‘naive’ discrete data treatment effect depends on how
the outcome function varies with e in the discretization cell for observations close to the cutoff.
4 Data from other sources show similar empirical moments. For example, the first four empirical moments of the birth date
distribution in the NLSY97 data are 0.501, 0.336, 0.252 and 0.201, and in the Italian anagraphic records data (2001–2011) are
0.507, 0.339, 0.255 and 0.203.
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Theorem 1. Let Assumptions 1–6 hold. Then � can be identified even if X� is not observed.

Theorem 1 says that the above assumptions are sufficient to identify the true local RD treatment
effect � . The only data these assumptions require are age cell means E .Y j X D x/ and moments
�k D E

�
ek
�
. Given just these data one can consistently estimate � .

Corollary 1 below describes the bias in the discrete-data RD treatment effect � 0, and provides a
general method for constructing a consistent estimator for � using rounded age based on Theorem 1.

Given Assumptions 1 and 3, one can write the true data model as

Y D

JX
jD0

ajX
�j C

JX
jD0

bjX
�jT � C "� (1)

where "� D Y ��E .Y j X�; T /,
PJ
jD0 ajX

�j D g0 .X�/ and
PJ
jD0 bjX

�j D g1 .X
�/�g0 .X�/.

Define A D .a0; a1; : : : ; aJ /
0 and B=.b0; b1; : : : ; bJ /

0. The true RD treatment effect is then � D b0.
Corollary 1 below shows that the rounded data model has the same functional form as equation (1)

but with different coefficients, so

Y D

JX
jD0

djX
j C

JX
jD0

cjX
jT � C " (2)

where " D Y � E .Y j X; T /,
PJ
jD0 djX

j D h0.X/, and
PJ
jD0 cjX

j D h1.X/ � h0.X/. Define
D D .d0; d1; : : : ; dJ /

0 and C D .c0; c1; : : : ; cJ /
0. The naive discrete data RD treatment effect is then

given by � 0 D c0. Given the discrete data regression (2), the identification and estimation problem is
to recover b0, and more generally all the coefficients A and B in equation (1), from the coefficients D
and C in equation (2).

Let
�
j
k

�
denote the binomial coefficient j !

k! .j�k/! . Define the J C 1 by J C 1 matrix M as the upper

triangular matrix that has the element
�
j
k

�
�j�k in row k C 1 and column j C 1 for all j; k satisfying

J � j � k � 0, with all elements below the diagonal being zero. For the special case in which e is
uniformly distributed in the range zero to one, the element of M in row k C 1 and column j C 1 will
be
�
j
k

�
�j�k D

�
j
k

�
1

j�kC1
D j !

k!.j�kC1/! .

Corollary 1. Let Assumptions 1–6 hold. Then:

(i) Equation (2) holds, with D identified as the vector of coefficients of the polynomial h0.x/ that
goes through the points x D �1;�2; : : : ;�J;� .J C 1/, and C is identified by C D C1 � D,
where C1 is the vector of coefficients of the polynomial h1.x/ that goes through the points x D
0; 1; : : : ; J .

(ii) The coefficients in the true underlying model A and B are identified by A D M�1D and B D
M�1C .

(iii) The true treatment effect is � D b0, the naive discrete data treatment effect is � 0 D c0, and the
difference or the bias is � 0 � � D

PJ
jD1 bj�j .

Corollary 1 shows that the rounded data model is itself a polynomial, and that the matrixM connects
the polynomial coefficientsD and C in the rounded data model to the coefficients A and B in the true
model by MA D D and MB D C .

To illustrate the potential size of the rounding bias, and hence the size of the proposed correction,
consider the case where the e distribution is uniform so �k D 1= .k C 1/. It then follows immediately
from Corollary 1 that the bias in the discrete data estimator is
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� 0 � � D
1

2
b1 C

1

3
b2 C : : :C

1

J C 1
bJ

As noted earlier, the coefficient bj for j D 1; 2; : : : ; J is the change in the j th derivatives of
E .Y j X�/ at the threshold.

This bias formula shows that if the slope and higher derivatives of the conditional mean outcome do
not change at the threshold, meaning that the treatment effect is locally constant, then the bias from
rounding will be zero. Otherwise, the larger the changes in slope and the higher derivatives are at the
threshold, the larger the rounding bias tends to be. Note that the rounding bias can result in either an
overestimate or an underestimate of the true RD treatment effect, depending on the changes in the
polynomial coefficients crossing the threshold. In particular, what appears to be a discontinuity in the
rounded discrete data may not exist with continuous data. The next section describes how to estimate
the true treatment effect from rounded discrete data, and test the significance of a true discontinuity.

The analysis in this section assumes that the threshold c is an integer, which means that by observing
X instead of X� one can still determine T �, whether one is above or below the threshold, without
error. In particular, X is non-negative if and only if X� is non-negative, so T � D I.X� � 0/ D

I.X � 0/. For example, in Card et al. (2008) the treatment threshold is defined to be age 65 (the age of
near-universal Medicare eligibility), so their data correctly sorts individuals into those who are above
65 and hence are eligible for Medicare from those who are not, even though they only observe age in
years. Note that when the threshold is not an integer, I.X� � 0/ D I.X � 0/ may not hold. Cases
like this are discussed in the extension Section 8.

These results can be extended immediately to applications involving other types of discretization
or rounding, as long as they maintain this property of no mismeasurement in the crossing threshold
indicator. Extensions to rounding involving mismeasurement of the crossing threshold status at the
cutoff, i.e. I.X� � 0/ ¤ I.X � 0/, are discussed in the extension Section 8.

4. ESTIMATION

This section describes how to apply Theorem 1 and Corollary 1 to estimate the true treatment effect
� with rounded data of the running variable. For simplicity, I first present the estimator for the case
where the polynomial regressions are fourth (or lower)-order polynomials, which should cover most
actual empirical applications. I then describe the general estimation method for any order polynomials.

Given n observations
®
Xi ; T

�
i ; Yi

¯
for i D 1; 2; : : : ; n, the first step is to estimate the following

equation:

Yi D d0 C d1Xi C d2X
2
i C d3X

3
i C d4X

4
i C

�
c0 C c1Xi C c2X

2
i C c3X

3
i C c4X

4
i

�
T �i C "i (3)

which is equation (2) with J D 4. Assuming all the assumptions hold conditioning on covariates, one
can add other covariates to the model if desired.

The naive discrete data treatment effect � 0 will just be c0 in this regression (3). However, by applying
Theorem 1 and Corollary 1 (detailed derivations are provided as supporting information in the sup-
plemental online Appendix), if the distribution of ages within a year (for individuals in the population
from which the data are drawn) is uniform, then the true treatment effect � is given by

� D c0 �
1

2
c1 C

1

6
c2 �

1

30
c4 (4)

More generally, the true treatment effect is

�Dc0��1c1C
�
2�21 � �2

�
c2C

�
�6�31 C 6�2�1 � �3

�
c3C

�
24�41�36�

2
1�2C8�3�1C6�

2
2��4

�
c4

(5)
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where �j D E
�
ej
�

for j D 1; : : : ; 4, and the distribution of e is the distribution of ages within a year,
on a scale of zero to one, where zero means a birth at the beginning of the first day of the year, and
one means a birth at the end of the last day. For lower-order polynomial models these same formulas
can be used, by just setting the higher-order coefficients equal to zero.

Since the bias-corrected treatment effect is a linear combination of regression coefficients, standard
methods, such as bootstrapping and the delta method, can be used to obtain standard errors. More
generally, the corrected treatment effect is estimated based on equation (5 ), where the moments are
estimated, then one also needs to take into account the estimation error of the moments (details are
provided in the online Appendix).

Equation (4) or more generally (5) can be used to test for the presence of rounding bias, by applying
an ordinary t-test to the hypothesis that the bias � 0 � � D 0. For example, when e has a uniform
distribution and the polynomial is degree J � 4, by equation (4) one would just need to test if c1=2�
c2=6C c4=30 equals zero. A sufficient condition for no rounding bias when the polynomial J � 4 is
that c1 , c2, c3 and c4 equal zero, so even if we did not know moments of the distribution of e, one
could still do a standard F -test of the joint hypothesis that the regression coefficients equal zero, i.e.
c1 D c2 D c3 D c4 D 0.

More generally, for higher-order polynomials, one may estimate the regression in equation (2) by
ordinary least squares and apply the bias correction in Corollary 1 (ii).

Bounds can be constructed directly based on Theorem 1 and Corollary 1 when the distribution of
the rounding error is unknown. In particular, rounding errors e lie between 0 and 1, which implies
that non-central moments �j D E.ej / satisfy 1 > �1 � �2 � : : : � �j � 0 . For example, in a
quadratic model, without knowing anything about the distribution of rounding errors (other than its
support), lower and upper bounds on the treatment effect � are given by the minimum and maximum
of c0 � �1c1 C

�
2�21 � �2

�
c2 over the set 1 > �1 � �2 � 0. Given estimates of each cj , one can

easily search over this set of values of �1 and �2 to obtain bounds. In the case of a linear model, the
bounds are given by c0 and c0 � c1, so the sign of the bias is entirely determined by the sign of c1, the
slope change at the cutoff (further discussion can be found in the online Appendix).

5. FUZZY DESIGNS

Continue to let T be the indicator of whether one is treated or not, and let T � D I .X� � 0/ be the
crossing threshold indicator. Unlike the sharp design, the fuzzy design RD no longer assumes T D T �.

Under well-known standard conditions, the fuzzy design RD local treatment effect �f is given by

�f D
�Y

�T
(6)

where �Y D E .Y j X� D 0; T � D 1/ � E .Y j X� D 0; T � D 0/, which is the size of the jump
or discontinuity in the mean outcome at the threshold, and �T D E .T j X� D 0; T � D 1/ �

E .T j X� D 0; T � D 0/, which is the size of the jump in the treatment probability at the threshold,
and 0 < �T < 1.

Both the numerator and the denominator may involve rounding bias. The estimator of the previous
sections can therefore be immediately extended to estimation of fuzzy design treatment effects. First
apply the exact same estimator as in the sharp design case to obtain a consistent estimatorb�Y of �Y .
Then replace Y with T and apply the exact same estimator again to obtain a consistent estimatorb�T
of �T . The fuzzy design treatment effect estimator is thenb�Y =b�T .

To illustrate the fuzzy design estimator, consider the case where the functional forms for
E .Y j X�; T � D t / and E .T j X�; T � D t / are fourth-order polynomials, so J D 4.5 Then one can

5 The orders of the polynomials in these two equations need not be the same, and these fourth-order polynomial formulas cover
lower-order polynomials as special cases by setting higher-order coefficients equal to zero.
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use least squares to estimate the coefficients in the outcome regression specified in equation (3) and a
similarly specified treatment regression:

Ti D r0 C r1Xi C r2X
2
i C r3X

3
i C r4X

4
i C

�
s0 C s1X C s2X

2
i C s3X

3
i C s4X

4
i

�
T �i C �i (7)

Then, assuming a uniform distribution for e, the fuzzy design treatment effect will be given by

�f D
c0 �

1
2
c1 C

1
6
c2 �

1
30
c4

s0 �
1
2
s1 C

1
6
s2 �

1
30
s4

(8)

This is in contrast to the incorrect discrete data treatment effect � 0
f
D � 0Y =�

0
T D c0=s0. Therefore

the size of the bias in a fuzzy design RD depends on the rounding bias in the numerator and that in
the denominator. If the change in slopes above and below the threshold in the numerator is opposite
in sign compared with that in the denominator, then the impact of rounding error on the ratio will be
magnified. The second empirical application in Section 7 illustrates this point. Similar to the case of
sharp design, standard errors can be obtained either by bootstrapping or by the delta method, after
jointly estimating the reduced form outcome and treatment equations.

Bounds can also be similarly constructed as in the case of sharp design. For example, in the case
of linear models, it can be shown that the bounds for the correct treatment effect are given by c0

s0
and

c0�c1
s0�s1

when �1 D 0 and �1 D 1, respectively.

6. MEDICARE AND INSURANCE COVERAGE

This section provides an empirical application examining the impact of qualifying for Medicare
at age 65 on the health insurance coverage rate in the USA. Others have applied RD analyses to Medi-
care qualification (see, for example, Card et al., 2008). I use this example because the presence of a
discontinuity in the insurance rate due to the treatment (Medicare eligibility) is uncontroversial, and
because the available data can be used to verify the accuracy of the proposed method for correcting
rounding bias.

The data used are from the US Health and Retirement Study (HRS). The HRS is a national panel
survey of individuals over age 50 and their spouses in the USA. It has extensive information on health
insurance, health, employment, demographics, etc. Data have been collected every 2 years since 1992.
Nine waves of data have been released so far. The HRS is suitable because it focuses on the elderly,
covering an age period particularly relevant to the empirical analysis here. More importantly, the HRS
has available both age in months and age in years, so one can compare the bias-corrected estimates
based on yearly age data with estimates based on monthly age data, and thereby empirically evaluate
how well the proposed correction works. This paper uses all waves of data. After observations with
missing values deleted, the final samples have 60,290–135,582 observations, depending on the age
ranges examined.

Let the outcome Y be the dummy indicating whether one has any health insurance, the cutoff c be
age 65 and X be the reported age minus 65. The (sharp design) treatment T D T � then corresponds
to crossing age 65 and thereby becoming eligible for Medicare.

Figures 1 and 2 show the age profiles of health insurance rates, i.e. the age cell means of Y against
age in years and in months, respectively. These figures clearly show a jump in insurance coverage at
age 65. To model this treatment effect, I fit second-, third- and fourth-order polynomials to annual
data. The quadratic model appears to underfit the model, while the fourth-order polynomial tends to
overfit especially for the narrower age ranges considered (both graphically and in terms of statistical
significance of higher-order terms as well as the adjusted R

2
of the regressions). I therefore focus on

the third-order polynomial as the preferred model (i.e. equation (3) with c4 and d4 set to zero), though
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Figure 1. The age (in years) profile of health insurance coverage rates, HRS 1992–2008

estimates using both third- and fourth-order polynomials are reported for comparison. Attempts to
include terms of degree five or more are completely insignificant and including these higher-order
terms does not improve overall fit of the model.

In practice, there is a trade-off regarding what age range of data around the threshold to include
in the model. A wider age range provides more observations, thereby adding to the precision with
which the model coefficients can be estimated. However, the further the included age are from the
threshold, the more likely it is that the correct specification for these distant observations will differ
from the correct specification near the threshold, risking specification errors. I consider four ranges of
data, specifically, 6, 9, 12 and 15 years below and above the threshold, corresponding to age ranges
59–70, 56–73, 53–76 and 50–79. Note that the smallest window width here is less than half the largest
window width.

Another specification issue is inclusion of covariates. To assess the impact of covariates, I estimate
models that include year of survey dummies with or without additional demographic characteris-
tics such as gender, race (white/non-white), ethnicity (Hispanic/non-Hispanic) and education levels.
Three education levels represent less than high school (the default), high school or GED (General
Educational Development), and college or above.

The results are reported in Table I. For each specification, the top panel in Table I presents the naive
discrete data estimates corresponding to � 0 D c0, and the bottom panel represents the bias-corrected
estimates corresponding to � in equation (4). Estimates based on monthly age data are reported in the
middle panel. Clustered standard errors are reported, taking into account the panel structure of the
data. All of the reported estimates are statistically significant at the 1% level.

For the preferred third-order polynomial, the results are similar across different specifications, i.e.
controlling for different covariates or using different ranges of data. Note that the monthly data esti-
mates are systematically smaller than the yearly data estimates, which implies that rounding of age
by years in these data results in an overestimate of the impact of the Medicare program. In contrast,
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Figure 2. The age (in months) profile of health insurance coverage rates, HRS 1992–2008

the bias-corrected annual data estimates are all close to, and slightly smaller than, the monthly data
estimates. Thus going from annual to monthly data appears to correct most but not all of the bias
associated with rounding. This is what one would expect if the proposed model and bias-correcting
methodology are valid.

When using the annual age data, the discrete data treatment effect � 0 is estimated to be in the range
of 0.124–0.128, which means that health insurance coverage rate increases by 12.4–12.8% due to
individuals qualifying for Medicare. In contrast, the estimates based on age in months are on average
about 5% lower, in the range of 0.118–0.121. The bias-corrected estimates are in a similar range of
0.117–0.119, averaging about 6% lower than estimates using yearly age data.

Table A1 in the online Appendix reports the estimated biases and their standard errors. These
estimates range mostly from 0.005 to 0.010, representing 4–9% upward biases. For the third-order
polynomials, most of these estimates are significant at the 1% level. For the fourth-order polynomi-
als, the estimates are significant only when using the longer 15 years window. This is not surprising
because the fourth-order polynomial is imprecisely estimated with shorter windows.

Statistically, the bias due to rounding is relatively small in percentage terms in this application. This
is not surprising given the fact that the slope of the health insurance profile changes very little at the
threshold age (as clearly shown by Figures 1 and 2, and by the coefficient estimates). As a result, the
leading term c1 in the correction expression � � � 0 D �1

2
c1 C

1
6
c2 �

1
30
c4 is quite small. Given that

the correction does not make much difference, one can expect that using exact birth date information
would not significantly improve the estimates in this case.

Economically, failing to correct for the rounding bias results in an overestimate of insurance cover-
age of 0.5–1.0% of the relevant population. The current population of the USA that is over age 65 and
hence qualifies for Medicare is approximately 38 million (according to the US Census), so even half
of 1% of this total is a large number of people.
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Table I. Estimated increases in health insurance coverage rate at the Medicare eligibility age 65

Third-order polynomial Fourth-order polynomial

(1) (2) (3) (1) (2) (3)

Naive estimates using age in years
Œ�6;C6/ 0.128 0.125 0.124 0.107 0.106 0.107

(0.015)*** (0.015)*** (0.015)*** (0.035)*** (0.034)*** (0.035)***
Œ�9;C9/ 0.128 0.128 0.127 0.124 0.119 0.121

(0.009)*** (0.009)*** (0.009)*** (0.016)*** (0.016)*** (0.014)***
Œ�12;C12/ 0.126 0.127 0.126 0.120 0.119 0.119

(0.007)*** (0.007)*** (0.007)*** (0.011)*** (0.010)*** (0.011)***
Œ�15;C15/ 0.124 0.126 0.126 0.129 0.128 0.129

(0.006)*** (0.006)*** (0.006)*** (0.009)*** (0.009)*** (0.009)***

Naive estimates using age in months
Œ�6;C6/ 0.119 0.118 0.119 0.112 0.113 0.113

(0.008)*** (0.008)*** (0.008)*** (0.011)*** (0.011)*** (0.011)***
Œ�9;C9/ 0.119 0.120 0.120 0.116 0.115 0.115

(0.007)*** (0.006)*** (0.007)*** (0.008)*** (0.008)*** (0.009)***
Œ�12;C12/ 0.119 0.120 0.121 0.116 0.117 0.116

(0.006)*** (0.006)*** (0.006)*** (0.007)*** (0.007)*** (0.007)***
Œ�15;C15/ 0.119 0.121 0.120 0.119 0.120 0.120

(0.005)*** (0.005)*** (0.005)*** (0.006)*** (0.006)*** (0.006)***

Bias-corrected estimates using age in years
Œ�6;C6/ 0.118 0.117 0.117 0.112 0.113 0.113

(0.009)*** (0.009)*** (0.009)*** (0.014)*** (0.014)*** (0.014)***
Œ�9;C9/ 0.117 0.117 0.118 0.116 0.115 0.116

(0.006)*** (0.006)*** (0.006)*** (0.009)*** (0.009)*** (0.009)***
Œ�12;C12/ 0.118 0.119 0.119 0.114 0.113 0.114

(0.006)*** (0.006)*** (0.006)*** (0.007)*** (0.007)*** (0.007)***
Œ�15;C15/ 0.117 0.118 0.119 0.119 0.120 0.120

(0.005)*** (0.005)*** (0.005)*** (0.006)*** (0.006)*** (0.006)***

Note: Estimates are based on HRS 1992–2008; (1) does not control for covariates; (2) controls for
year dummies; (3) controls for year dummies and additional demographic variables. Bottom panel,
bias-corrected estimates, applying formula in equation (4). Robust clustered standard errors are cal-
culated by the delta method; *significant at 10% level; **significant at 5% level; ***significant at
1% level.

Table II. Bounds for the bias-corrected estimates of health insurance rate increase at 65

(1) (2) (3)

Œ�6;C6/ 0.128 (0.109, 0.128] 0.125 (0.111, 0.125] 0.124 (0.111, 0.124]
Œ�9;C9/ 0.128 (0.108, 0.128] 0.127 (0.109, 0.127] 0.127 (0.109, 0.127]
Œ�12;C12/ 0.126 (0.111, 0.126] 0.127 (0.113, 0.127] 0.126 (0.111, 0.126]
Œ�15;C15/ 0.124 (0.111, 0.124] 0.126 (0.112, 0.126] 0.126 (0.112, 0.126]

Note: Estimates are based on HRS 1992–2008; all estimates utilize third-order polynomials; bounds
are provided in parentheses next to the naive estimates; (1) does not control for covariates; (2) controls
for year dummies; (3) controls for year dummies and additional demographic variables.

Table II reports the bounds on the bias-corrected estimates for the preferred third-order polynomial.
Since the slope change dominates other higher-order derivative changes, not surprisingly these bounds
are narrow, ranging from 0.013 to 0.02 in width. Also, the naive uncorrected estimates are the upper
bounds of the correct estimates, implying an overestimation of the true effect of Medicare eligibility
by using rounded age in years.
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7. THE RETIREMENT-CONSUMPTION PUZZLE IN CHINA

This section applies the proposed approach to investigating consumption changes around retirement
in China. Standard life cycle models suggest that rational people smooth consumption over the life
cycle, so consumption should not change at retirement when retirement is expected. However, many
empirical studies find that consumption (typically food consumption) drops significantly at retirement.
This finding is referred to as the ‘retirement-consumption puzzle’.

Evidence of this puzzle has been mostly obtained from developed Western countries, including
the UK (Banks et al., 1998), the USA (Bernheim et al., 2001; Aguila et al., 2011; Ameriks et al.,
2007; Haider and Stephens, 2007; Hurd and Rohwedder, 2008), Canada (Robb and Burbridge, 1989),
Germany (Schwerdt, 2005) and Italy (Battistin et al., 2009; Borella et al., 2011). Evidence from
developing countries is scanty.

Most analyses of the retirement-consumption puzzle depend on structural models. One exception is
Battistin et al. (2009), who estimate RD models that exploit pension eligibility rules in Italy.

This section conducts an RD analysis of the retirement-consumption puzzle in China, taking
advantage of the Chinese mandatory retirement rule. Since age is reported in years in the dataset used
here, I apply the proposed approach to correct the associated rounding bias. The Chinese case is inter-
esting due to its unique social and cultural environment, which differs in many ways from developed
Western countries.

In China, the official retirement age is 60 for male workers, 55 for white-collar female workers
and 50 for blue-collar female workers, with some exceptions applying to certain occupations and to
disabled workers.6 These mandatory retirement ages have not changed ever since the retirement system
was founded in the 1950s. Compared with pension eligibility rules, the mandatory retirement policy
in China induces a larger change in the retirement probability and hence helps more precisely identify
the causal impact of retirement on consumption.

The analysis here focuses on male workers, because female workers’ labor supply is more com-
plicated and their mandatory retirement age depends on the types of their work. I look at food
consumption, because so far the evidence of the ‘retirement-consumption puzzle’ is mostly about food
consumption declines. Similarly, I find that in the Chinese dataset food consumption declines, but not
other categories of consumption. The sample includes all urban male household heads who are labor
force participants, so, for example, homemakers are not included. Some workers may retire earlier
than the mandatory retirement age, and some may be re-employed after the official retirement. Also,
the mandatory retirement policy may not be strictly enforced in the private sector compared to the
state sector, including state-owned enterprises (SOEs) and government units. As a result, the change
in the retirement rate is less than one at 60, which entails fuzzy design RD models.

Data in this analysis are from the China Urban Household Survey (UHS), and are collected by the
National Bureau of Statistics (NBS) every year to monitor consumption in China and to construct the
consumer price index (CPI). Complete data from five provinces and one municipality from 1997 to
2006 are used.7 The UHS questionnaires changed a few times over the years, but the survey ques-
tions are relatively consistent for the period 1997–2006. In addition, the pension system in China
changed in 1997. In particular, the Chinese government adopted a system that combines individual

6 Those who have jobs that are risky, harmful to their health or extremely physically demanding can retire 5 years before the
official retirement ages, i.e. 45 for blue-collar female workers and 55 for male workers. Male workers who become disabled
and hence are unable to do their work can apply to retire at 50, while disabled female workers can retire at 45. Civil servants
also qualify for early retirement if they have worked for 30 years and are within 5 years of their retirement age.
7 The five provinces are Liaoning, Zhejiang, Guangdong Shanxi and Sichuan, and the one city is Beijing.
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Figure 3. The age (in years) profile of retirement rates for male household heads, UHS 1997–2006

accounts and social pooling to provide retirement funds. Before that, pensions were provided entirely
by employers.8

In China, eligible male workers can start their retirement paperwork at the beginning of the month
they turn 60. Typically the paperwork is processed right away and eligible workers start to receive
their pension the following month after they turn 60.

For the sample period this paper looks at, individual employment status reflects that in the last
month.9 In theory, a household head can retire any time during the year, so household consumption at
60 is generally a mixture of pre- and post-retirement consumption. I therefore exclude observations at
the cutoff age 60 in the estimation, assuming that the retirement rate change induced by the mandatory
retirement policy is fully realized at 61. This ensures that all individuals who are observed below the
cutoff age of 60 are drawn from the pre mandatory retirement age profile h0.X/, and all the individuals
who are observed above the cutoff age are drawn from the post mandatory retirement age profile
h1.X/. I then estimate the polynomial models using data from ages 59 and below and ages 61 and
above, and evaluate changes at 60 by extrapolating these regression curves to the cutoff age of 60.

Figures 3 and 4 show the age profiles (age cell means) of the retirement rate and the logarithm
of household food expenditure. Food expenditure is in 1996 constant Chinese Yuan. The retirement
profile shows an obvious jump and a mild slope change crossing the retirement cutoff age 60
(normalized to 0 in the figures). The jump represents an exogenous change in the retirement rate
induced by the retirement policy and provides identification of the retirement impact on food

8 Including or excluding the implementation year 1997 does not make much difference in the estimation results. This could be
because individuals’ retirement status is recorded at the end of the year, which should be after the reform. Also, all specifications
control for year fixed effects, which should pick up mean differences across years.
9 In particular, information on employment status is collected and updated every month, starting on the 21st of the previous
month to the 20th of the current month.
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Figure 4. The age (in years) profile of log food expenditure, UHS 1997–2006

consumption. The modest slope change implies that rounding bias in the retirement rate jump at the
threshold may not be zero, but is possibly rather small.

In contrast to the retirement profile, the food consumption profile shows an obvious drop crossing
the threshold age, along with a substantial change in slope. Before 60, food consumption increases
steadily with age, while after 60 food consumption declines rapidly. Given this large change in slope,
one should expect substantial rounding bias in the estimated change in food consumption at the
retirement age of 60.

Define the outcome Y as the logarithm of household food expenditure. Let T be a dummy indicating
whether a household head has retired or not. Let c be the cutoff age 60, and X be the recorded age in
years minus 60. Log food consumption Y and retirement T are specified as polynomial models as in
equations (2) and (7). These models are estimated using three different window widths, i.e. 6, 10 and
15 years above and below the cutoff. The sample sizes corresponding to the three window widths are
12,866, 22,296 and 33,754, respectively. In particular, linear models (setting dp and cp for p D 2; 3; 4
in equation (2) to zero) are adopted for log food consumption, while third-order polynomials (setting
r4 and s4 in equation (7) to zero) are used for the retirement rate, except that when using the short 6
years window a quadratic model is adopted in that case.10 These polynomial orders are chosen based
on goodness-of-fit measures and significance of the coefficients on higher-order terms.

The estimation results are reported in Table II. The top panel in Table II presents the uncorrected
(or naive) estimates, while the bottom panel presents the bias-corrected estimates. The uncor-
rected and bias-corrected retirement effects in this case are given by � 0

f
D c0=s0 and �f D�

c0 �
1
2
c1
�
=
�
s0 �

1
2
s1 C

1
6
s2
�
, respectively. I also try controlling for different covariates. The esti-

mates on the right side of Table III (noted as (1) in the table) control for year fixed effects, family
size, family size squared and education levels, including college or above, high school and less than

10 Adopting a quadratic model for the retirement equation in this case means also setting s3 to zero.
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Table III. Effects of retirement on food consumption at the mandatory retirement age 60

(1) (2)

(a) (b) (a)/(b) (a) (b) (a)/(b)

Naive estimates
Œ�6;C6� �0:046 0.193 �0:237 �0:041 0.191 �0:213

(0.017)*** (0.024)*** (0.085)*** (0.016)** (0.024)*** (0.085)**
Œ�10;C10� �0:054 0.187 �0:289 �0:054 0.188 �0:286

(0.013)*** (0.022)*** (0.078)*** (0.013)*** (0.022)*** (0.078)***
Œ�15;C15� �0:054 0.211 �0:257 �0:055 0.209 �0:261

(0.011)*** (0.014)*** (0.049)*** (0.010)*** (0.014)*** (0.048)***

Bias-corrected estimates
Œ�6;C6� �0:034 0.215 �0:157 �0:029 0.214 �0:134

(0.017)** (0.022)*** (0.075)** (0.016)** (0.022)*** (0.074)*
Œ�10;C10� �0:044 0.207 �0:213 �0:045 0.207 �0:219

(0.013)*** (0.020)*** (0.061)*** (0.013)*** (0.020)*** (0.061)***
Œ�15;C15� �0:044 0.233 �0:188 �0:046 0.232 �0:198

(0.011)*** (0.014)*** (0.042)*** (0.011)*** (0.014)*** (0.042)***

Note: Estimates are based on male household heads, UHS 1997–2006; (a) represents change in the log
food consumption at 65; (b) represents change in the retirement rate at 65; (a)/(b) represents the effect
of retirement on food consumption; (1) controls for year dummies, family size, family size squared,
and education levels; (2) only controls for year dummies. Bootstrapped standard errors are in the
parentheses; *significant at the 10% level; **significant at the 5% level; ***significant at the 1% level.

high school (the default). As a comparison, the estimates on the left half of the table (noted as (2) in
Table III) control only for year fixed effects.

The preferred specification is the one that uses data 10 years above and below the cutoff age of 60
and controls for the full set of covariates as discussed above. Household food consumption crucially
depends on family size and permanent income (proxied by education levels here), so including these
covariates can help reduce the sample variation in log food consumption and hence provides more
precise estimates.

The uncorrected estimates of the retirement effect range from�0:213 to�0:289, representing a drop
of 21.3% to 28.9% in food consumption at retirement among those male household heads who retire
due to the mandatory retirement policy. In contrast, the bias-corrected estimates indicate a smaller
13.4% to 21.9% drop in food consumption at retirement, so accounting for rounding of age leads to a
decrease of over one fourth in the estimated retirement effects on food consumption. Note that in this
case the denominator is biased down and the numerator biased up, so the impact of rounding error on
the ratio is magnified.

Table A2 in the online Appendix shows the estimated biases and their bootstrapped standard errors.
The estimated biases range from 0.064 to 0.080. All are statistically significant at the 1% level. These
estimates indicate that the naive uncorrected estimates overestimate the retirement effect on food
consumption by 6.4–8.0 percentage points.

Table IV gives the bounds on the bias-corrected estimates. The naive estimates are the lower bounds,
so ignoring the rounding error overestimates the negative effect of retirement on consumption.

Overall, the estimated retirement effects are consistent with the existing evidence documented
for many developed Western countries, i.e. food consumption drops significantly when male
household heads retire at the mandatory retirement age, and that households do not seem to smooth
food expenditures at retirement even though the age of retirement is fully anticipated. RD models
using age in years as the running variable overestimate the food consumption drop at retirement.
Because of the substantial change in the slope of the food consumption profile around the
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Table IV. Bounds for the bias-corrected estimates of the retirement effects on consumption

(1) (2)

Œ�6;C6/ �0:237 Œ�0:237; �0:095/ �0:213 Œ�0:213; �0:073/
Œ�10;C10/ �0:289 Œ�0:289; �0:160/ �0:286 Œ�0:286; �0:172/
Œ�15;C15/ �0:257 Œ0:257; �0:136/ �0:261 Œ�0:261; �0:150/

Note: Estimates are based on male household heads, UHS 1997–2006; bounds are provided in paren-
theses next to the naive estimates; (1) controls for year dummies, family size, family size squared, and
education levels; (2) only controls for year dummies.

mandatory retirement age, correcting for the rounding bias has sizable effects on the estimated
retirement effects in this case. Applying the proposed correction appears to be both statistically and
economically important.

8. EXTENSIONS: OTHER FORMS OF ROUNDING OR NON-INTEGER THRESHOLD

So far, the analysis has focused on rounding down to the nearest integer, as in the case of how age is
typically reported. However, Theorem 1 and Corollary 1 do not actually specify or requireX to be X�

rounded down to the nearest integer. In particular, the assumptions that involve X are Assumptions 4,
5 and 6. While these assumptions are plausible for discretization based on rounding down, they do not
require this type of rounding, and they may be applied to other types of rounding.

Still, Assumption 5 requires that there should be no mismeasurement in the crossing threshold
dummy I.X � 0/. This may not hold in other common types of rounding, such as rounding up or
ordinary rounding, i.e. rounding either up or down, whichever is closer. In the following I discuss
these alternative forms of rounding and provide simple extensions of the previous approach to handle
these cases. In particular, I show that one can simply discard observations at the cutoff, because the
crossing threshold dummy is mismeasured only at that point, i.e. the true crossing threshold dummy
I .X� � 0 j X D 0/ could be 0, while the observed crossing threshold dummy I.X � 0 j X D

0/ is always 1. In these cases, observations at the cutoff contains both above- and below-threshold
outcomes, i.e. they contains data generated by both the pre- and post-cutoff regression functions,
h0.X/ and h1.X/.

To illustrate, suppose that age is now recorded by ordinary rounding and that the threshold c is age
65. Then individuals who are over 64.5 and under 65 will have their true crossing threshold status
I.X� � 0/ D 0, while at the same time they will have their recorded age be 65 (based on ordinary
rounding) and hence their observed crossing threshold status T � D I.X � 0/ D 1. These individ-
uals are misclassified regarding their crossing threshold status. This will tend to bias downward the
treatment probability change at the cutoff.

Discretization by ordinary rounding or rounding up with an integer cutoff can only cause
I .X� � 0/ ¤ I .X � 0/ at X D 0. In the above example, by ordinary rounding, everyone over age
65.5 will have both their true age and their rounded age be above the cutoff, and hence both X� and
X positive. Similarly, everyone strictly under age 64.5 will have both their true age and their rounded
age be below the cutoff and hence both X� and X negative. Discarding observations at the cutoff can
ensure that one only uses observations truly above the cutoff to estimate h0.X/ and those truly below
the estimate h1.X/.

Another way in which rounding can cause the crossing threshold dummy to be mismeasured is when
the running variable is rounded to integer values while the threshold c is not an integer. For example,
the age at which people born in the years 1938–1942 qualify for full social security benefits in the
USA (called the full retirement age by the social security administration) ranges from 65 years and 2

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 30: 422–446 (2015)
DOI: 10.1002/jae



RD: ROUNDING ERRORS IN RUNNING VARIABLE 441

months to 65 years and 10 months. In particular, for those who were born in 1939, the full retirement
age is 65 years and 4 months, i.e. 65.33 years. Individuals who are 65.33–66 years old will have passed
the full retirement age, given their recorded age of 65 (assuming rounding down), yet they will be
mistaken as still being below the cutoff.

Note that X is normalized by subtracting the cutoff c, and so will be non-integer valued if the cutoff
is a non-integer. Assuming rounding down, in this case I .X � 0/ ¤ I .X� � 0/ only for the one
observable value of X right under the cutoff, i.e. the one value that lies in the interval �1 < X < 0,
because the observations that have X� right above the non-integer cutoff will be rounded down to
below the cutoff. Similarly, ifX is discretized by always rounding up, then I .X � 0/ can fail to equal
I .X� � 0/ only for the one observable value of X right above the cutoff, i.e. the one value that lies
in the interval 0 < X < 1 . Further, if X is discretized by ordinary rounding, then I .X � 0/ can fail
to equal I .X� � 0/ for the one observable value of X either right under or right above the cutoff,
depending on whether the cutoff is positive or negative.

In all these cases, the observed outcomes for X at or right next to the cutoff contain a mix of
observations whose true X� is right above and right under the cutoff, so treating them as if they are all
at or above the cutoff or all below the cutoff leads to a biased estimate of the true treatment effect, in
addition to the rounding bias that involves all points away from the cutoff.

Another way to understand the problem of mismeasuring the crossing threshold dummy is to
think of its role as an instrumental variable (IV) in RD models. It is well known that the standard
fuzzy design RD estimator can be interpreted as a local IV estimator, using the crossing threshold
dummy I .X� � 0/ as an instrument for the treatment T . With these alternative types of rounding,
the observed crossing threshold dummy I .X � 0/ is mismeasured relative to the true instrument
I .X� � 0/, and this mismeasurement will introduce bias in the estimated treatment effect, in addition
to the bias caused by rounding as in Theorem 1.

To consistently handle all the above cases, consider the following simple extension to Theorem 1
and Corollary 1.

Corollary 2. Let Assumptions 1–4 and 6 hold. Assume that if X � 1, then X� > 0, and that if
X � �1, then X� < 0, then the conclusions of Theorem 1 and Corollary 1 hold, replacing equation
(2) with

Y D

JX
jD0

djX
j C

JX
jD0

cjX
jT � C " for all X � 1 or X � �1 (9)

Since these alternative forms of rounding cause trouble only for observations at one value of X
such that �1 < X < 1, Corollary 2 states that one can fix the problem by just discarding those
observations from the estimation. A similar approach, dropping observations for which the running
variable is mismeasured in an RD model, has been proposed by Barreca et al. (2010). In particular,
Barreca et al. (2010) find that birth weights are disproportionately represented at multiples of round
numbers (i.e. 100 g and ounce multiples), which caused biased RD treatment effect estimates when
using birth weight as a running variable. To deal with the problem, those authors suggest discarding
observations corresponding to rounded birth weight.

Ordinary rounding may not be common for reporting age, but may be more likely in other appli-
cations, such as when the running variable is a test score or when one uses the midpoints of reported
income or wealth intervals. If one has the ordinary rounding problem and apply Corollary 2, then e
will range from �0:5 toC0:5, instead of ranging from 0 to 1. If e is uniformly distributed in this inter-
val then �k D E

�
ek
�
D
R 0:5
�0:5 e

kde D
h
.0:5/kC1 � .�0:5/kC1

i
= .k C 1/, which is zero for all odd
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values of k, so many more elements of the matrixM will be zero than before, and hence the bias from
rounding in this case is likely to be smaller.11

Corollary 2 can be extended to fuzzy designs in the same way as Corollary 1, by being applied in
both the numerator and denominator of the fuzzy design treatment effect � D �Y =�T .

9. CONCLUSIONS

Using a rounded and hence discrete running variable has been common in applications of RD models.
This is frequently due to data availability. This paper contributes to the growing RD literature by
addressing issues associated with this common practice. In particular, when the running variable is
rounded and hence is discrete, the standard RD estimation yields biased estimates of the RD treatment
effects, even if the functional form of the model is correctly specified. In practice, this rounding or
discretization bias can be very easily corrected. This paper presents simple formulas to fix this bias and
hence provides consistent estimates of RD treatment effects given only rounded data of the running
variable. The proposed approach does not require instrumental variables, but instead uses information
regarding the distribution of rounding errors within the discretization cell, e.g. the distribution of ages
within a year in the case of using age in years as a running variable. This can be easily obtained from
census data, and often close to uniform.

In one empirical application, I investigate the effect of Medicare eligibility at 65 on insurance cover-
age in the USA. Higher-frequency age data (age in months) are available, and so provide a benchmark.
I show that the proposed method to correct the rounding bias works well and produces estimates that
are consistent with having and using data where age is more accurately measured.

In another empirical application, I provide an RD analysis that exploits the mandatory retirement
policy in China to test for the presence of, and estimate the magnitude of, a retirement-consumption
puzzle in China. In this case, the food consumption profile around the mandatory retirement age of
60 for male workers has relatively large slope changes, so the rounding bias is sizable and the bias
correction is empirically important.

The proposed methodology is extended to cases involving non-integer cutoffs or other common
forms of rounding, such as ordinary rounding or rounding up to the nearest integer. This
paper’s empirical applications focus on age in years, but the proposed approach can be used
in other RD applications where the running variable is similarly rounded. Examples include
using calendar years or integer-valued test scores as a running variable or dealing with the heap-
ing problem (at ounce multiples) of birth weight when it is used as a running variable. Further, the
proposed approach may also be similarly applied in regression models where one only has interval
data on a regressor.

Instead of estimating the mean treatment effect at the cutoff, Frandsen et al. (2012) estimate quantile
RD treatment effects for standard fuzzy design RD models. One interesting topic for future research
is then to extend the current results to the case of estimating quantile RD treatment effects.
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APPENDIX

Proof of Theorem 1. X equals the integer part of X� and hence it is a deterministic function of X�;
therefore, E .Y j X�; T �/ D E .Y j X�; X; T �/. By this result and the law of iterated expectations,
we have

E
�
Y j X; T �

�
D E

�
E
�
Y j X�; T �

�
j X; T �

�
Therefore

E
�
Y j X; T � D t

�
D E

�
E
�
Y j X�; T �D t

�
j X; T �D t

�
D E

�
gt
�
X�
�
j X

�
D EŒgt .X C e/ j X�

The second equality follows from T � D I .X � 0/ D I .X� � 0/ being a deterministic function
of X� and E.Y j X�; I .X� � 0/ D t / D gt .X�/ for t D 0; 1 given a sharp design.

Given Assumption 3, define the unknown polynomial coefficients bjt by

gt
�
X�
�
D

JX
jD0

bjtX
�j (A.1)
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and let Bt be the column vector of elements b0t ; b1t ; : : : ; bJ t for t D 0; 1. Then

gt .X C e/ D

JX
jD0

bjt .X C e/
j D

JX
jD0

jX
kD0

 
j

k

!
bjte

j�kXk D

JX
kD0

JX
jDk

 
j

k

!
bjte

j�kXk

where
�
j
k

�
is the binomial coefficient j !

k!.j�k/! . Substituting this expression for gt into the equation for
E .Y j X; T � D t / gives

E
�
Y j X; T � D t

�
D

JX
kD0

JX
jDk

 
j

k

!
bjtE

�
ej�k j X

�
Xk

By Assumption 6E
�
ek j X

�
D �k D E

�
ek
�

is known. By Assumptions 1 and 4 and the definition
of ht .X/, we have h0.X/ D E .Y j X; T � D 0/ when X < 0 and h1.X/ D E .Y j X; T � D 1/ when
X � 0. Putting these equations together gives

ht .X/ D

JX
kD0

cktX
k where ckt D

JX
jDk

 
j

k

!
�j�kbjt (A.2)

By Assumption 6, the value of ht .X/ is identified at J (or more) values of X for t D 0; 1. Since
the above shows that ht .X/ is a polynomial of order J , and any polynomial of order J is uniquely
identified by its values at J C 1 points, it follows that the coefficients ckt are identified. Note that
one does not need to know the polynomial order J a priori, since given this paper’s assumption the
observed values of ht .X/ will trace out the polynomial of proper degree, thereby identifying J .

Equation (A.2) shows the connection between the coefficients in the discrete data regression bjt and
the true continuous data regression ckt for j; k D 0; 1; : : : ; J . The following express this relationship
in matrix notation.

For t D 0; 1, define the upper triangular J C 1 by J C 1 matrix M as having the element
�
j
k

�
�j�k

in row k C 1 and column j C 1 for all j; k satisfying 0 � k � j � J . All elements of M below the
diagonal are zero. Recall that Ct consists of elements ckt for k D 0; 1; : : : ; J and that Bt consists of
elements bjt for j D 0; 1; : : : ; J . Given the matrix M , ckt D

PJ
jDk

�
j
k

�
�j�kbjt , for t D 0; 1 can be

rewritten as

Ct DMBt

Note that the matrixM is non-singular, because it is triangular with all ones on its diagonal, and all
finite values off its diagonal, as e is bounded between 0 and 1. Then M can be inverted to solve for
Bt given the already identified constants Ct , i.e. Bt D M�1Ct . For the special case that e D 0 with
probability one, Bt D Ct . Then � D g1.0/ � g0.0/ D b01 � b00 is identified. Also the conditional
mean functions gt .X�/ D

PJ
jD0 bjtX

�j for t D 0; 1 are identified.

Proof of Corollary 1. By construction E.Y j X; T �/ D h0.X/ C Œh1.X/ � h0.X/� T
�, and this

equation along with equation (A.2) yields equation (2) with dj D cj0 and cj D cj1 � cj0 for j D
0; : : : ; J , and hence part (i) of the Corollary holds given the property that any polynomial of degree J
is identified by J C 1 points.

By construction, A D B0 D Œb00; b10; : : : ; bJ0�
0, and B D Œb0; b1; : : : ; bJ �

0 D B1 � B0 D

Œb01 � b00; b11 � b10; : : : ; bJ1 � bJ0�
0, so � D b0 is the first element of B . Similarly, by

construction D D C0 D Œc00; c10; : : : ; cJ0�
0 and C D Œc0; c1; : : : ; cJ �

0 D C1 � C0 D
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Œc01 � c00; c11 � c10; : : : ; cJ1 � cJ0�
0, so � 0 D c0 is the first element of C . By Theorem1, Ct DMBt ,

for t D 0; 1, which implies D D MA and C1 � C0 D M .B1 � B0/, and hence C D MB , and M
is invertible by Theorem 1, which gives part (ii). The first row of the matrix equation C D MB is
c0 D b0 C

PJ
jD1 bj�j and so part (iii) holds.

Proof of Corollary 2. The assumptions of Corollary 2 imply that T � D I .X � 0/ for all values of
X � 1 or X � �1 , i.e. there is no mismeasurement error in T �. Thus the steps of the proofs of
Theorem 1 and Corollary 1 are repeated using all values of X except those having �1 < X < 1.
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