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Abstract—This paper discusses testable implications of rank invariance or
rank similarity, assumptions that are common in program evaluation and in
the quantile treatment effect (QTE) literature. We nonparametrically iden-
tify, estimate, and test the counterfactual distribution of potential ranks,
or features of the distribution. The proposed tests allow treatment to be
endogenous, with exogenous treatment following as a special case. The
tests essentially do not require any additional assumptions other than those
to identify and estimate QTEs. We apply the proposed tests to investi-
gate whether the Job Training Partnership Act training causes trainees to
systematically change their ranks in the earnings distribution.

I. Introduction

IN the last decade or so, researchers have increasingly
sought to identify and estimate distributional effects of

social programs or public policies. Rank invariance or rank
preservation is required either as a key identifying assump-
tion or to interpret the identified distributional effects as
individual causal effects.1

This paper discusses testable implications of rank invari-
ance or a weaker condition, rank similarity, and proposes
nonparametric tests that work for both. It is well known
that without functional form restrictions, one cannot identify
the joint distribution of potential outcomes. As a result, any
conditions imposed on the joint distribution are not directly
testable. Our tests instead draw on the implications of the
conditional distribution of potential outcomes conditional
on observable covariates, that is, among observationally
equivalent individuals.

We nonparametrically identify, estimate, and test the
counterfactual distribution of potential ranks or features
of the distribution (e.g., mean, median, or any particular
quantile) among observationally equivalent individuals. We
focus on ranks in the unconditional distribution of poten-
tial outcomes. The proposed test can be readily extended
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1 For the former see, e.g., the instrumental variable quantile regression
(IVQR) model by Chernozhukov and Hansen (2005, 2006, 2008) or the
nonparametric IV quantile regression models of Chernozhukov, Imbens,
and Newey (2007) and Horowitz and Lee (2007), which implicitly impose
rank invariance by imposing a scalar disturbance. For the latter, see, e.g.,
the LQTE framework of Abadie, Angrist, and Imbens (2002), Frolich and
Melly (2013), Firpo (2007), Imbens and Newey (2009), and Firpo and Pinto
(2015).

to testing conditional potential ranks or ranks in the condi-
tional distribution of potential outcomes.2 In an indepen-
dent and contemporaneous work, Frandsen and Lefgren
(2015) also leverage observable covariates and propose a
regression-based test for rank similarity.

The proposed tests allow treatment to be endogenous.
Exogenous treatment follows as a special case. Except for
mild regularity conditions, our tests do not require any addi-
tional assumptions other than those used to identify and
estimate QTEs. Covariates are permitted in estimating the
unconditional QTEs, so these tests can handle instrumental
variables regardless of whether they are valid conditional
on covariates or valid unconditionally. We apply our tests
to evaluate rank invariance or similarity in the Job Training
Partnership Act (JTPA) training program. We show that this
training program causes trainees to systematically change
their ranks in the earnings distribution. The impacts of the
JTPA training on individual trainees can be very different
from the distributional effects of this program.

The rest of the paper proceeds as follows. Section II
discusses the testable implication of rank invariance and
rank similarity, as well as the corresponding conditional
moment restrictions. Also discussed is the identification
of the counterfactual distribution of potential ranks among
observationally equivalent individuals. Section III provides
our test statistic along with its asymptotic distribution.
Section IV presents the empirical application. Section V
concludes. Monte Carlo simulations, proofs, and several
extensions are provided in the online appendixes.

II. Model Setup and Identification

A. Rank Invariance, Rank Similarity, and
Their Testable Implications

We first define rank invariance and rank similarity
imposed on the unconditional distribution of potential out-
comes and then discuss their implications.

Consider the standard potential outcome framework. Let
T be the binary treatment indicator. T = 1 if an individual
is treated and 0 otherwise. Let Yt for t = 0, 1 be the poten-
tial outcome under no treatment or treatment. The observed

2 Note that we do not view the proposed tests as tests for the identifying
assumption of the Chernozhukov and Hansen (2005, 2006, 2008) IVQR
model or the nonparametric IV quantile regression model of Chernozhukov
et al. (2007) and Horowitz and Lee (2007), since these models impose rank
invariance or similarity on conditional potential ranks, after conditioning
on all relevant observables. Similarity or invariance of conditional ranks is
more plausible when conditioning on a rich set of covariates, as discussed in
Chernozhukov and Hansen (2006). Our proposed tests utilize the predictive
power of observable covariates for potential ranks. These tests are useful in
testing rank invariance or preservation when not all relevant covariates are
included in the conditioning set of the conditional potential ranks.
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outcome is then Y = Y0(1 − T) + Y1T . Assume that Y is
continuous. Let Ft(.) and qt(.) for t = 0, 1 be the cumulative
distribution function and quantile function of Yt . Following
Doksum (1974) and Lehmann (1974), we define the uncon-
ditional QTE as QTE(τ) = q1(τ) − q0(τ) for τ ∈ (0, 1). Let
Ut = Ft (Yt), t = 0, 1 be the potential rank; Ut ∼ U (0, 1)

by construction.

Definition 1. Rank invariance is the condition that
U0 = U1.

Under rank invariance, an individual’s potential rank with
or without treatment remains the same, so U0 and U1 are the
same random variable. For example, assume Yt = g(t, X, V),
t = 0, 1 for some observables X and unobservables V . V
may be a vector. The potential rank is then given by Ut =
Ft (g(t, X, V)). Rank invariance holds if and only if U0|(X =
x, V = v) = U1|(X = x, V = v) for all (x, v). Immediately it
implies U0|(X = x) ∼ U1|(X = x) for all x, where ∼ means
“follows the same distribution as.”

Rank invariance may be restrictive in practice. Consider
the following thought experiment. A test is given to a random
sample of students and their clones. Let the treatment T be
a binary indicator for being a clone. Y0 and Y1 are then the
potential test scores for a student and her clone, respectively.
This treatment is supposed to have no effects on test scores.
However, due to random chance or luck, a student and her
clone may not have the same test score and hence the same
rank. Nevertheless, if we repeat this experiment infinitely
many times, the student and her clone will have the same
distribution of ranks.3

Rank similarity relaxes rank invariance by allowing for
random deviations, or slippages in one’s rank away from
some common level (Chernozhukov & Hansen, 2005). Con-
sider again the above thought experiment. Assume that
potential test score is determined by Yt = g(X, V , St),
where X (e.g., education) and V (e.g., ability) determine
the expected common rank level for a student and her clone,
and St , t = 0, 1, are idiosyncratic shocks (e.g., luck) mutu-
ally independent and identically distributed across the two
treatment states. St is responsible for random slippages from
the common rank level. Then Ut|(X = x, V = v), t = 0, 1
have the same distribution. Formally define rank similarity
as follows.

Definition 2. Rank similarity is the condition that U0|(X =
x, V = v) ∼ U1|(X = x, V = v) for any (x, v) in its
support W , where X and V are the observable and unob-
servable determinants or shifters of the common rank level
under treatment or no treatment.

While rank invariance requires U0 and U1 to be the same
random variable, rank similarity assumes only that they

3 Note that luck is plausibly mutually i.i.d. across treatment states (i.e.,
for a student and her clone).

have the same conditional distribution. Chernozhukov and
Hansen (2005) consider a weaker condition: rank similar-
ity for conditional potential ranks. Rank similarity among
unconditional potential ranks implies rank similarity among
conditional potential ranks.4

Rank invariance is a special case of rank similarity, where
the distribution of potential ranks is degenerate. The follow-
ing discussion therefore focuses on rank similarity. All the
conclusions hold trivially for rank invariance.

Lemma 1. Given rank similarity, for all τ ∈ (0, 1),

1. FX,V |U0(x, v|τ) = FX,V |U1(x, v|τ) for all (x, v) ∈ W ;
2. (Main testable implication) FU0|X(τ|x) = FU1|X(τ|x)

for all x in its support X .

Part 1 of lemma 1 follows immediately from the defini-
tion of rank similarity and Bayes’ rule. It states that given
rank similarity, at the same rank of the potential outcome
distributions, the distribution of all relevant observables and
unobservables remains the same. To investigate rank preser-
vation, empirical researchers in program evaluation often
check covariate similarity at the same quantile of the treat-
ment and control outcome distributions (Bitler, Gelbach, &
Hoynes, 2006, 2008). Here we show that the distribution of
covariates is also identical at the same potential rank under
this weaker condition, rank similarity.

Part 2 of lemma 1 states that under rank similarity, the dis-
tribution of potential ranks among observationally equivalent
individuals is the same across treatment states. This impli-
cation is what we directly test. Without further assumptions,
this condition is only a necessary condition for rank sim-
ilarity. Below we provide an assumption under which this
testable implication is also a sufficient condition.

Lemma 2. If FV |X,U0(v|x,τ) = FV |X,U1(v|x,τ) for all τ ∈
(0, 1) and x ∈ X , rank similarity holds if and only if
FU0|X(τ|x) = FU1|X(τ|x) for all τ ∈ (0, 1) and x ∈ X .

Lemma 2 assumes that given observables X = x, the dis-
tribution of unobservables is the same at the same rank of
the potential outcome distribution. Note that this assump-
tion does not assume away unobservables. In particular,
it does not imply FUt |X,V (.|x,v) = FUt |X(.|x), t = 0, 1.
This assumption resembles in spirit the unconfoundedness
assumption that is popular in program evaluation (e.g., in
various matching estimators). It is essentially not testable,
just like unconfoundedness.

4 To see the difference, by the Skorohod representation of potential out-
comes, one can write Yt = q(t, Ut), where q(t, Ut) is the quantile function
of Yt . Ut is then the unconditional potential rank when T = t. In contrast,
Chernozhukov and Hansen (2005, 2006, 2008) define a conditional potential
rank using Yt ≡ q(t, x, Ũt), so Ũt represents the conditional potential rank
conditional on X = x. Ũt is responsible for the heterogeneity of outcomes
among individuals with the same observed characteristics X = x in treat-
ment state t. Their rank similarity then assumes Ũ0 ∼ Ũ1 conditional on X
and the treatment model unobservables V .
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Given rank similarity, E [Y1 − Y0|X = x, V = v] =∫ 1
0 QTE(τ)dFU|X,V (τ|x, v) for all (x, v) ∈ W , where

FU|X,V (.|x, v) ≡ FUt |X,V (.|x, v), t = 0, 1. Identification of
E [Y1 − Y0|X = x, V = v] then relies on researchers’ abil-
ity to identify the QTEs and the conditional distribution of
ranks FU|X,V (τ|x, v). That is, under rank similarity, one loses
the ability to nonparametrically identify treatment effects for
particular individuals (see, e.g., Imbens & Newey, 2009).

B. Identification of the Potential Rank Distribution

This section discusses identification of the potential rank
distributions and, further, identification of the conditional
moment restrictions implied by rank invariance or rank sim-
ilarity. We focus on endogenous treatment, with exogenous
treatment following as a special case.

To test our main testable implication, different frame-
works may be adopted. As is evident from theorem 1 and its
proof, what is required is a valid instrumental variable (or the
unconfoundedness assumption) that allows one to identify
and estimate (a) the quantile function of the potential out-
come distribution or equivalent and (b) conditioning on some
observable covariates, the effects of treatment on the distri-
bution of potential ranks (constructed using the estimated
quantiles in the first step).

Here we adopt the LQTE framework. The LQTE identi-
fying assumptions are particularly suitable for our empirical
application of the JTPA training program (see the discus-
sion in Abadie et al., 2002). The LQTE framework permits
unrestricted heterogeneity of treatment effects and conse-
quently identifies QTEs only for compliers, which are the
largest subpopulation for which QTEs can be point identi-
fied without further restrictions. Testing for rank similarity
is then relevant only among compliers. If assumptions are
made to identify unconditional QTEs for the whole popu-
lation, one can analogously test for rank similarity for the
whole population. A brief discussion on this is provided at
the end of this section.

Let Z be a binary instrumental variable (IV). Further let
Tz, z = 0, 1, be the potential treatment status if Z = z. The
observed treatment status is then given by T = T0(1 − Z) +
T1Z . We make the following identifying assumptions.

Assumption 1. Let (Y0, Y1, T0, T1, X, Z) be random vari-
ables mapped from the common probability space (Ω, F, P).
Assume that the data-generating process satisfies the fol-
lowing conditions: (a) Independence: (Y0, Y1, T0, T1) ⊥
Z|X. (b) First stage: E(T1) �= E(T0). (c) Monotonicity:
Pr(T1 ≥ T0) =1. (d) Nontrivial assignment: 0 < Pr(Z = 1|
X = x) < 1 for all x ∈ X .

Assumption 1 is the standard LQTE identifying assump-
tion used in Abadie et al. (2002) and Abadie (2003), except
that we allow for a weaker first stage. In particular, we
do not require compliers to exist at every value of X.
The reason is that we identify and estimate unconditional

potential ranks instead of conditional potential ranks (see
the discussion in Frolich & Melly, 2013) and that our test
examines whether rank similarity is violated at any potential
ranks.

When Z is a random assignment indicator, as in our
empirical application, the independence restriction is valid
without conditioning on covariates X. Including covariates
can remove any chance association between T and X or
improve efficiency.

Define compliers as individuals with T1 > T0 (Angrist,
Imbens, & Rubin, 1996). Let C denote the set of compli-
ers. Define the cumulative distribution function of Yt among
compliers as Ft|C(y) = Pr(Yt ≤ y|T1 > T0) for t = 0, 1. We
are interested in testing for rank similarity among compli-
ers. For notational convenience, unless stated otherwise in
the following, we use Ut to refer to potential ranks among
compliers only, that is, Ut ≡ Ut|C = Ft|C(Yt) for t = 0, 1. Let
XC = {x ∈ X : Pr [T1 > T0|X = x] > 0}. Analogous to
part 2 of lemma 1, rank similarity among compliers implies

FU1|C,X(τ|x) = FU0|C,X(τ|x) for all τ ∈ (0, 1)

and x ∈ XC . (1)

Let qt|C(τ) for t = 0, 1 be the τ quantile of potential out-
comes Yt among compliers. The following theorem provides
identification of equation (1):

Theorem 1. Define I(τ) ≡ 1(Y ≤ (Tq1|C(τ) + (1 − T)

q0|C(τ))). Given assumption 1, for all τ ∈ (0, 1), x ∈ XC,
and t = 0, 1,

FUt |C,X(τ|x) =

E [I(τ)1 (T = t) |Z = 1, X = x]

− E [I(τ)1 (T = t) |Z = 0, X = x]

E[1 (T = t) |Z = 1, X = x]
− E[1 (T = t) |Z = 0, X = x]

.

(2)

Further, equation (1) holds if and only if

E [I(τ)|Z = 1, X = x] = E [I(τ)|Z = 0, X = x]

for all τ ∈ (0, 1) and x ∈ X .
(3)

I(τ) is identified because qt|C(τ) for t = 0, 1 is identi-
fied following Frolich and Melly (2013) under assumption
1. Note that equation (3) holds trivially for any x ∈ X /XC ,
and hence under rank similarity, equation (3) holds for all
x ∈ X . Note also that theorem 1 nests exogenous treatment
as a special case. When T is exogenous, Z = T and everyone
is a complier.

Equation (2) in theorem 1 provides a convenient way to
estimate the entire distribution of potential ranks among
those with X = x and thereby quantify the degree of vio-
lation in rank similarity at different quantiles or different
covariate values. For testing purposes only, one can simply
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use the reduced-form equation (3). In practice, the covariates
X need to be nontrivial in order for a test based on equation
(3) to have any power. If Ft|C,X (x) = Ft|C for t = 0, 1 and
all x ∈ XC , then equation (3) would hold by construction.

Theorem 1 suggests testing for rank similarity by a two-
step procedure: first, estimate the unconditional quantiles
q0|C(τ) and q1|C(τ); second, test whether equation (3) holds
for all τ ∈ (0, 1) and x ∈ X , after replacing q0|C(τ) and
q1|C(τ) with their estimators.

If desired, one may test a particular quantile, such as the
median, or a subset of quantiles. One can also test function-
als, such as any moments of the potential rank distribution.
Equation (1) implies that

E[Up
1 |C, X = x] = E[Up

0 |C, X = x], (4)

for all x ∈ XC and some integer p ≥ 1. When p = 1,
equation (4) suggests a mean test for rank similarity. Let
U ≡ TU1 +(1−T)U0 = ∫ 1

0 1((Tq1|C(τ)+(1−T)q0|C(τ)) <

Y)dτ = 1 − ∫ 1
0 I(τ)dτ. Analogous to theorem 1, equation

(4) holds if and only if for all x ∈ X ,

E
[
Up|Z = 1, X = x

] = E
[
Up|Z = 0, X = x

]
.

This discussion assumes that a valid instrument is avail-
able. If instead unconfoundedness holds given some covari-
ates, one can first apply the estimator of Firpo (2007) or
Donald and Hsu (2014) to estimate unconditional quantiles
for the whole population, and then test rank similarity for
the whole population using these covariates.5

III. Testing

This section constructs nonparametric tests for the testable
implication discussed in section B. The vector of observables
X is assumed to be discrete with finite support. In practice,
one typically has a limited number of covariates, and one can
always discretize covariates. Tests with continuous covari-
ates or discrete covariates with large support are discussed
in online appendix C.

A. The Distributional Test for Rank Similarity

Let X = {x1, x2, . . . , xJ} be the support of X and
Ω = {τ1, τ2, . . . , τK} be the set of quantiles of interest.
For any j = 1, . . . , J , z = 0, 1 and k = 1, . . . , K , define
mz

j (τk) ≡ E
[
I (τk) |Z = z, X = xj

]
. We are interested in

testing the null and alternative hypotheses:

H0: m0
j (τk) = m1

j (τk), for all j = 1, . . . , J − 1

and k = 1, . . . , K ,

Ha: H0 is not true.

5 See also Chernozhukov, Fernández-Val, and Melly (2013) for estima-
tion and inference of counterfactual distributions and functionals of the
counterfactual distributions without requiring an IV.

Note that only J − 1 values of X are included in
the null hypothesis, since

∑J
j=1 m1

j (τ) Pr
(
X = xj

) =∑J
j=1 m0

j (τ) Pr
(
X = xj

)
for all τ ∈ (0, 1), as is shown

in online appendix B.
Let {Yi, Ti, Zi, Xi}n

i=1 be a sample of i.i.d. draws of size
n from (Y , T , Z , X). Let q̂t|C(τk) be the

√
n-consistent esti-

mators of qt|C(τk) proposed by Frolich and Melly (2013),
which have the advantage of allowing for covariates while
estimating unconditional quantiles.(

q̂0|C(τk), q̂1|C(τk)
)

= arg min
q0,q1

1

n

n∑
i=1

ρτk (Yi − q0(1 − Ti) − q1Ti)ω̂i,

where ρτk (u) = u(τk − 1(u < 0)) is the standard check

function, ω̂i =
(

Zi
π̂(Xi)

− 1−Zi
1−π̂(Xi)

)
(2Ti − 1) and π̂(x) =∑n

i=1 1(Zi=1,Xi=x)∑n
i=1 1(Xi=x)

estimates π(x) ≡ P(Zi = 1|Xi = x).6

Define nz
j ≡ ∑n

i=1 1(Zi = z, Xi = xj). The nonparametric
estimator of mz

j (τk) is then

m̂z
j (τk) = 1

nz
j

∑
Zi=z,Xi=xj

× 1
(
Yi ≤ (

Tiq̂1|C(τk) + (1 − Ti)q̂0|C(τk)
))

.

Let m̂z
j = [

m̂z
j (τ1) m̂z

j (τ2) · · · m̂z
j (τK)

]′
and mz

j = [
mz

j (τ1)

mz
j (τ2) · · · mz

j (τK)
]′

be K × 1 vectors, and m̂z = [
(m̂z

1)
′

(m̂z
2)

′ · · · (m̂z
J−1)

′]′
and mz = [

(mz
1)

′ (mz
2)

′ · · · (mz
J−1)

′]′

be K(J − 1) × 1 vectors. Let V̂ be a consistent estimator of
the asymptotic variance-covariance matrix of

√
n

(
m̂1 − m̂0

)
under the null hypothesis H0. We propose a Wald-type test
statistic:

W = n
(
m̂1 − m̂0

)′
V̂−1

(
m̂1 − m̂0

)
.

To derive asymptotic properties of the test statistic W , we
make following assumptions.

Assumption 2. (a) The data {Yi, Ti, Zi, Xi}n
i=1 are a random

sample from (Y , T , Z , X). (b) For allτ ∈ Ω = {τ1, τ2, . . . , τK}
and t = 0, 1, the distribution of Yt among compliers, or Ft|C,
is absolutely continuous with density function ft|C that is pos-
itive and bounded in a neighborhood of qt|C(τ). (c) For all
j = 1, . . . , J, pj = Pr

(
X = xj

)
> 0. (d) Let fY |X(y|xj) be the

conditional density of Y given X. For j = 1, . . . , J, fY |X(y|xj)

is positive and continuouly differentiable in a neighborhood
of qt|C(τ), for all t = 0, 1 and τ ∈ Ω.

Parts a and b of assumption 2 guarantee consistency of
q̂t|C(τk) for t = 0, 1 and k = 1, . . . , K . Parts c and d ensure
that the asymptotic variance-covariance matrix of m̂1 − m̂0

6 The Stata command ivqte can be conveniently used to estimate q̂0|C(τk)
and q̂1|C(τk). ω̂i in practice is replaced by projected weights projected onto
Y and T to make sure that the weights are nonnegative.
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is bounded and has full rank. Let pZ ,X(z, xj) be the joint
probability of Z = z, X = xj, pT |Z ,X(t|z, xj) be the probability
of T = t given Z = z and X = xj, let Pc = E[T |Z =
1] − E[T |Z = 0] be the proportion of compliers, and let
fY |T ,Z ,X be the conditional density of Y given T , Z , and X.
The following theorem provides the asymptotic distribution
of m̂1 − m̂0.

Theorem 2. Given assumptions 1 and 2,
√

n
(
m̂1 − m̂0 − (

m1 − m0
)) ⇒ N(0, V).

Matrix V is K(J − 1) × K(J − 1) and p.d. Its
( ∑J−1

j=1 K( j −
1)+k,

∑J−1
j′=1 K( j′−1)+k′)th element is equal to E

[(
φ1

j (τk)−
φ0

j (τk)
)(

φ1
j′(τk′) − φ0

j′(τk′)
)]

with

φz
j (τk) ≡ φz

j (τk; Y , T , Z , X) =
(

I(τk) − mz
j (τk)

)
× 1(Z = z, X = xj)/pZ ,X(z, xj)

−
∑
t=0,1

fY |T ,Z ,X(qt|C(τk)|t, z, xj)pT |Z ,X(t|z, xj)

× ψt(Y , T , Z , X)/Pc/ft|C
(
qt|C(τk)

)
.

Functions ψ0(Y , T , Z , X) and ψ1(Y , T , Z , X) are defined in
the proof of theorem 7 in Frolich and Melly (2007) and are
restated in the proof of this theorem in online appendix B.

The last two terms of φz
j (τk) come from the estima-

tion errors of q̂0|C(τk) and q̂1|C(τk). If these quantiles were
known, φz

j (τk) would reduce to
(
I(τk) − mz

j (τk)
)
1(Z =

z, X = xj)/pZ ,X(z, xj), and, hence, the
( ∑J−1

j=1 K( j − 1) +
k,

∑J−1
j′=1 K( j′ − 1) + k′)th element of V would reduce to 0

if j �= j′ and
∑

z=0,1

(
mz

j (τk ∧ τk′) − mz
j (τk)m

z
j (τk′)

)
if j = j′.

Given the above theorem, it follows immediately that the
test statistic W converges in distribution to χ2(K(J − 1))

under the null and explodes under the alternative. Therefore,
we will reject the null if W exceeds the (1 − α) × 100th
percentile of the χ2(K(J − 1)) distribution. The following
corollary summarizes the asymptotic properties of the test:

Corollary 1. Let cα be the (1−α)×100th percentile of the
χ2(K(J − 1)) distribution. Given assumptions 1 and 2, we
have that (a) if H0 is true, limn→∞ P(W > cα) = α; (b) if H0

is false, limn→∞ P(W > cα) = 1.

Considering the complicated nature of the asymptotic
variance-covariance matrix resulting from the first-stage esti-
mation of the unconditional quantile functions, one may
estimate V by bootstrap. Note that the set X is finite here.
We discuss an extension that allows J to go to infinity with
the sample size in online appendix C. There, the estimation
error from estimating the unconditional quantile functions
does not play a role in the asymptotic distribution of the test
statistic and the analytical variance-covariance matrix can be
estimated easily.

Note that assumption 2 guarantees that the variance-
covariance matrix V has full rank. In practice with a small
sample, it is possible that for some small cells defined by
values of X and Z , both m̂1

j (τk) and m̂0
j (τk) are degenerate,

and, hence, V̂ does not have full rank. The effective number
of moment restrictions in H0 is then the rank of V̂, which
should be used as the degrees of freedom for the test statistic.

B. The Mean Test for Rank Similarity

In this section we construct a mean test for rank similarity.
Tests for other moments of potential ranks can be constructed
similarly and are omitted to save space.

Let m̄z
j = E[U|Z = z, X = xj] for z = 0, 1. The null

hypothesis of interest is

H0,mean: m̄0
j = m̄1

j , for all j = 1, . . . , J − 1.

Ha,mean: H0,mean is not true.

Let
(
τ1, . . . τS

)
be S random numbers drawn from the uni-

form distribution U(0, 1) that are independent of the data.
One can simulate individual i’s rank in the complier poten-
tial outcome distribution by Ûi = R̂(Yi, Ti) with R̂(y, t) =
1
S

∑S
s=1 1

((
tq̂1|C (τs) + (1 − t)q̂0|C (τs)

) ≤ y
)
. Let m̈z

j =
1
nz

j

∑
Zi=z,Xi=xj

Ûi be the estimator of m̄z
j , for z = 0, 1. Let

m̄z = [
m̄z

1 m̄z
2 · · · m̄z

J−1

]′
, m̈z = [

m̈z
1 m̈z

2 · · · m̈z
J−1

]′
, and let

V̈ be the bootstrapped covariance matrix of
√

n
(
m̈1 − m̈0

)
under the null. Define the test statistic as

Wmean ≡ n
(
m̈1 − m̈0

)′
V̈−1

(
m̈1 − m̈0

)
.

The following corollary summarizes the asymptotic property
of m̈1 − m̈0.

Corollary 2. Suppose that assumption 2 holds for Ω =
(0, 1). Given assumptions 1 and 2, under the null hypothesis
that m̄1 = m̄0, when S, n → ∞,

√
n

(
m̈1 − m̈0

) ⇒ N(0, Vmean).

The
(

j, j′
)
th element of Vmean is E

[( ∫ 1
0 φ1

j (τ)dτ −∫ 1
0 φ0

j (τ)dτ
)( ∫ 1

0 φ1
j′(τ)dτ − ∫ 1

0 φ0
j′(τ)dτ

)]
, with φz

j defined in
theorem 2.

Corollary 2 suggests that Wmean converges in distribution
to χ2(J−1) under the null and explodes under the alternative.
This mean test could be useful when testing a large set of
quantiles is not practical due to, for example, a small sample
size. However, when the sample size is large, the mean test
could be computationally demanding as it requires estimat-
ing potential ranks for every individual. Also, the mean test
could sometimes have lower power than the distributional
test as it tests only one particular feature of potential rank dis-
tributions, while rank similarity is naturally a distributional
concept. We show this point in our empirical application.
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IV. Empirical Application

This section applies our proposed tests to investigate
whether job training can change trainees’ ranking in the
earnings distribution. The impact of job training programs
on trainee earnings, especially those with low income, is of
great interest to both policymakers and economists. Abadie
et al. (2002) and Chernozhukov and Hansen (2008) use the
JTPA experimental data to evaluate the impact of the JTPA
training program on the distribution of trainee earnings. An
interesting feature of the JTPA training experiment is that
there are almost always no takers, so the estimated LQTEs
can be seen as the QTEs for the treated or the trainees. Both
Abadie et al. (2002) and Chernozhukov and Hansen (2008)
focus on conditional QTEs.

Here we estimate unconditional QTEs, as we are inter-
ested in learning how this program affects the unconditional
distribution of earnings. We then apply our proposed tests.
If rank invariance is plausible, one may then infer from the
estimated distributional effects causal impacts of the JTPA
training on earnings for individual trainees at different quan-
tiles of the distribution. For example, we show that the
program has small and insignificant impacts at the lower
tail of the earnings distribution for men. However, can we
conclude that the JTPA training has no real impacts for male
trainees at the bottom of the earnings distribution?

We use the same data as those used in Abadie et al. (2002).
We also have information on age in years (instead of five age
categories) to perform falsification tests for our rank similar-
ity tests. The sample consists of 5,102 observations for men
and 6,102 observations for women. The data contain infor-
mation on earnings (Y ), training (T ), treatment assignment
status (Z), and some predetermined individual characteris-
tics (X).7 Earnings are measured as total earnings over the
thirty-month period following the assignment of individuals
into the treatment or the control group. Details on the exper-
imental data collection and sample selection criteria are in
Abadie et al. (2002).

Table 1 presents the estimated unconditional QTEs at
equally spaced quantiles from 0.15 to 0.85 with an incre-
ment of 0.05. Also presented are quantiles of the potential
earnings without training. Thus, the ratio of the two numbers
in each row gives the percentage change in earnings at each
quantile. They would represent real impacts of the training
on earnings for individuals at each quantile if rank invariance
held. Estimates in table 2 show that the JTPA training pro-
gram has significant impacts at almost every quantile of the
earnings distribution for female trainees. The correspond-
ing percentage changes are larger at lower quantiles due
to females’ very low potential earnings without training at
those quantiles. In sharp contrast, the estimated QTEs are

7 The set of individual characteristics includes dummies for black or His-
panic applicants, a dummy for high school graduates or GED holders, a
dummy for married applicants, whether the applicant worked at least twelve
weeks in the twelve months preceding random assignment, a dummy for
AFDC receipt (for women only), and five age category dummies.

Table 1.—First-Stage Estimates of Unconditional QTEs

of Training on Trainee Earnings

Female Male

Quantile Y0 QTE Y0 QTE

0.15 195 291 (341.88) 1,462 249 (713.36)

0.20 723 714 (358.31)∗ 2,733 390 (723.01)

0.25 1,458 1,200 (372.08)∗∗∗ 4,434 489 (746.85)

0.30 2,463 1,380 (399.21)∗∗∗ 6,993 340 (891.74)

0.35 3,784 1,705 (497.01)∗∗∗ 8,836 594 (1, 042.40)

0.40 5,271 1,974 (669.75)∗∗∗ 11,010 723 (1, 104.63)

0.45 6,726 2,451 (766.25)∗∗∗ 13,104 1,069 (1,144.28)

0.50 8,685 2,436 (829.29)∗∗∗ 15,374 1,291 (1,234.59)

0.55 11,007 2,089 (877.56)∗∗ 17,357 2,239 (1,295.79)∗
0.60 12,618 2,729 (886.96)∗∗∗ 20,409 2,118 (1,418.40)

0.65 14,682 2,943 (920.45)∗∗∗ 23,342 2,319 (1,557.00)

0.70 16,971 2,772 (1,027.14)∗∗∗ 27,169 1,780 (1,606.66)

0.75 20,252 2,106 (1,152.35)∗ 30,439 2,408 (1,641.47)

0.80 23,064 2,331 (1,149.71)∗∗ 34,620 2,800 (1,701.90)∗
0.85 26,735 1,762 (1,179.91) 39,233 3,955 (1,886.98)∗

Standard errors are in parentheses. All estimates control for covariates including dummies for blacks,
Hispanics, high school graduates (including GED holders), marital status, whether the applicant worked
at least twelve weeks in the twelve months preceding random assignment, and AFDC receipt (for women
only), as well as five age group dummies. Significant at *10%, **5%, and ***1%.

much smaller and insignificant for male trainees at the low
quantiles. At the same time, male trainees have much higher
potential earnings without training, leading to even small
and statistically insignificant percentage changes at the low
quantiles. The estimated QTEs for men are larger in abso-
lute terms above the median, but still small in percentage
terms.

Panel A of table 2 reports results from the distributional
tests for rank similarity with two different sets of quantiles.
In columns I, the proposed tests are conducted jointly at
Ω = {0.15, 0.20, . . . , 0.85}, while in columns II, the tests
are conducted jointly at Ω = {0.20, 0.3, . . . , 0.80}. For both,
we either include covariates in the first-stage unconditional
QTE estimation or not. To ensure the nontrivial assignment
or common support requirement of assumption 1, we drop X
values with fewer than five observations when either Z = 1
or Z = 0.

Panel B of table 2 reports results from the same tests
except that we replace the dependent variable earnings with
age in years. Rank similarity holds trivially in this case,
since training is supposed to have no effects on age. Fur-
ther, individual characteristics are correlated with age, so
these additional tests can serve as falsification tests for our
main tests.

As shown in table 2, rank invariance or the weaker con-
dition, rank similarity, can be strongly rejected among both
female and male trainees. The test results are very similar
regardless of whether we control for covariates in the first
stage. This is due to the fact that assignment to treatment is
well randomized in the JTPA experiment, and so the assign-
ment indicator Z is a valid IV regardless of conditioning
on covariates. In sharp contrast, when age is used as the
dependent variable, rank invariance cannot be rejected in all
cases. Not surprisingly, training does not cause individuals
to systematically change their ranks in the age distribution.
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Table 2.—The Distributional Tests for Rank Similarity

Female Male

I II I II

(1) (2) (1) (2) (1) (2) (1) (2)

A: Dependent variable is earnings
W Stat. 7,652.1 7,763.8 1,197.2 1,177.8 2,780.7 2,719.0 886.1 876.8

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
d.f. 1,544 1,544 723 723 1,218 1,218 570 570

B: Falsification test (dependent variable is age)
W Stat. 478.8 471.9 252.0 259.9 209.3 203.5 124.7 123.0

(0.926) (0.953) (0.366) (0.245) (1.000) (1.000) (0.977) (0.982)
d.f. 525 525 245 245 338 338 158 158

Results are based on the chi-squared test in theorem 2; variance-covariance matrices are bootstrapped with 2,000 replications; p-values are in parentheses. Columns I report a joint test at equally spaced 15 quantiles
from 0.15 to 0.85. Columns II report a joint test at equally spaced 7 quantiles from 0.20 to 0.80; (1) controls for covariates in the first-stage unconditional QTE estimation, while (2) does not; X values with fewer than
five observations when either Z = 0 or Z = 1 are not used in the test to ensure the common support assumption.

Table 3.—Individual Quantile and Mean Tests for Rank Similarity

A. Earnings B. Falsification Test (Age)

Female Male Female Male

W Stat. W Stat. W Stat. W Stat.

I: Individual quantile test
0.15 134.4 (0.012) 103.8 (0.045) 43.9 (0.144) 19.4 (0.561)
0.20 143.0 (0.004) 113.3 (0.010) 37.9 (0.340) 22.1 (0.391)
0.25 126.2 (0.060) 107.8 (0.025) 26.0 (0.863) 13.9 (0.907)
0.30 131.9 (0.034) 104.7 (0.039) 26.9 (0.834) 15.0 (0.861)
0.35 147.2 (0.003) 95.8 (0.142) 22.1 (0.956) 17.9 (0.712)
0.40 118.3 (0.160) 88.6 (0.291) 31.1 (0.659) 23.2 (0.447)
0.45 107.5 (0.387) 110.7 (0.019) 32.1 (0.611) 22.4 (0.497)
0.50 110.9 (0.304) 113.6 (0.012) 32.3 (0.599) 19.2 (0.692)
0.55 112.6 (0.266) 110.9 (0.019) 30.8 (0.673) 19.6 (0.664)
0.60 112.1 (0.276) 112.3 (0.015) 32.7 (0.581) 22.3 (0.503)
0.65 121.7 (0.113) 105.0 (0.044) 29.4 (0.734) 18.4 (0.735)
0.70 108.0 (0.375) 106.1 (0.038) 36.7 (0.388) 24.0 (0.402)
0.75 130.4 (0.035) 109.7 (0.018) 45.4 (0.112) 16.5 (0.831)
0.80 118.4 (0.128) 116.5 (0.005) 47.7 (0.074) 17.1 (0.802)
0.85 92.3 (0.697) 118.7 (0.002) 44.7 (0.125) 18.7 (0.716)
II: Mean test

Mean 123.1 (0.098) 115.2 (0.009) 30.6 (0.683) 18.4 (0.736)

Results are based on the chi-squared test in theorem 2; variance-covariance matrices are bootstrapped with 2,000 replications; p-values are in parentheses; covariates are controlled for in the first-stage unconditional
QTE estimation. X values with fewer than five observations when either Z = 1 or Z = 0 are not used in the test to ensure the common support assumption.

To investigate how seriously rank similarity is violated at
different parts of the potential earnings distribution, we test
rank similarity at each individual quantile from 0.15 to 0.85.
Panel A in table 3 presents results from these individual
quantile tests. For men, rank similarity can be rejected at
almost all quantiles except for the 0.35 and 0.40 quantiles.
For women, rank similarity can be rejected strongly at the
lower tail of the distribution, but not so near the median or
above. Panel B in table 3 presents results from the corre-
sponding falsification tests. Again in sharp contrast, at the
5% significance level, we fail to reject rank invariance or
similarity at all quantiles for both women and men when
age is the dependent variable.8

The bottom part of table 3 reports results from the mean
tests for rank similarity. Again we can strongly reject rank

8 The only time the test is rejected only at the 10% significance level
is when looking at the 0.80 quantile for women. There is no systematic
evidence of violation of rank similarity otherwise.

similarity among male trainees. The evidence is somewhat
weaker for the female sample. The test result is only
marginally significant at the 10% level. This is not surpris-
ing, since rank similarity is violated largely only at the lower
tail of the earnings distribution for women.

The test results show that rank similarity is seriously
violated among male trainees. Recall that the estimated dis-
tributional effects for men are mostly small and insignificant.
These test results are interesting, since they suggest that
training causes men to systemically change their ranks in the
earnings distribution and that the program effects for male
trainees are more complicated than those suggested by the
estimated QTEs. For female trainees, the training program
seems to mainly cause rank changes at the lower tail of the
earnings distribution.

In conclusion, for the JTPA training program, the esti-
mated QTEs can at best capture how the distribution of
earnings changes with the training. One should be cautious
in equating the distributional effects of the JTPA training
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with the true impacts on earnings for individual trainees.
For example, although the training does not raise the lower
tail of the earnings distribution for men, it does not mean
that the JTPA training has no real impacts for male trainees
at the bottom of the earnings distribution.

Finally, it is worth mentioning that our results are
largely consistent with the findings by Heckman, Smith,
and Clements (1997). Based on large-scale permutation
exercises, they show that “heterogeneity is an important
feature of impact distributions" and that “perfect positive
dependence across potential outcome distributions produces
estimates of impact distributions that are not credible."

V. Conclusion

This paper proposes tests for rank invariance or rank
similarity. We nonparametrically identify and test the coun-
terfactual distribution of potential ranks or features of the
distribution (such as mean, median, or any particular quan-
tile) among observationally equivalent individuals. These
tests can be useful in examining whether some subgroup
of particular interest changes its ranks in the outcome dis-
tribution under treatment. By testing any particular quantile,
the proposed tests are informative regarding at which part of
the potential outcome distribution rank similarity is violated.

The proposed tests allow treatment to be endogenous,
with exogenous treatment following readily as a special case.
Other than mild regularity conditions, the proposed tests do
not require any additional assumptions other than those used
to identify and estimate the first-stage unconditional QTEs.

The usefulness of our proposed tests is illustrated in eval-
uating the JTPA training program. We show that while male
trainees change their ranks throughout the earnings distribu-
tion, female trainees change ranks only at the lower tail of
the distribution. Overall evidence suggests that the estimated
QTEs capture the impacts of the JTPA training on the dis-
tribution of trainee earnings instead of those on individual
trainee earnings.

Note that we focus on testing individual ranks in the
unconditional distributions of potential outcomes. If desired,
the proposed tests can be readily extended to testing for
invariance or similarity of ranks in the conditional distri-
bution of potential outcomes. Such tests require additional
covariates other than those used in the conditioning set of
conditional quantile or rank estimation. In particular, one
can first estimate quantiles of the conditional distribution of
potential outcomes, conditional on covariates of interest X1,
and then use additional covariates X2 along with X1 to per-
form the tests. For example, in our empirical application,

we estimate quantiles of potential earnings and perform the
tests separately for male and female trainees. These tests
are essentially rank similarity tests for conditional potential
ranks conditional on gender.
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