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ABSTRACT
The standard regression discontinuity (RD) design deals with a binary treatment. Many empirical appli-
cations of RD designs involve continuous treatments. This article establishes identification and robust
bias-corrected inference for such RD designs. Causal identification is achieved by using any changes
in the distribution of the continuous treatment at the RD threshold (including the usual mean change
as a special case). We discuss a double-robust identification approach and propose an estimand that
incorporates the standard fuzzy RD estimand as a special case. Applying the proposed approach, we
estimate the impacts of bank capital on bank failure in the pre-Great Depression era in the United States.
Our RD design takes advantage of the minimum capital requirements, which change discontinuously with
town size.
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1. Introduction

Regression discontinuity (RD) designs have been widely used
for causal analysis in many disciplines, including economics,
political science, education, epidemiology, public health, and
medicine. The standard RD design assumes a binary treat-
ment. In practice, many empirical applications of RD designs
involve continuous treatments, for example, alcohol consump-
tion around the minimum legal drinking age, air pollution
across neighboring geographical regions, or medical expendi-
ture around the low birth weight cutoff (Almond et al. 2010;
Litschig and Morrison 2010; Chen et al. 2013; Ebenstein et al.
2017; Giuntella and Mazzonna 2019; Fan, He, and Zhou 2020).
In this article, we consider nonparametric identification and
inference for fuzzy RD designs with a continuous treatment,
where the distribution of the continuous treatment variable
changes at the RD threshold.

Consider our empirical question for concreteness—are banks
less likely to fail when they hold more capital? To provide a cred-
ible estimate of the causal effect of bank capital on bank failure,
one needs some quasi-experimental variation in bank capital.
As seen in Figure 1 (left), one potential source of variation
is the relationship between the minimum capital requirement
and town size in the early 20th century of the United States—
as town size crosses a certain threshold, the minimum capital
requirement (marked by the solid line) jumps up and the bottom
of the capital distribution shifts up correspondingly. Given this
relationship, one may be tempted to apply the standard RD
estimand, that is, the RD local Wald ratio that associates a mean
change in the outcome (bank failure) with a mean change in the
treatment (bank capital) at the RD threshold.

Hahn, Todd, and van der Klaauw (2001) showed that under
proper conditions, the RD local Wald ratio with a binary treat-
ment identifies a local average treatment effect (LATE) for
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compliers at the RD threshold. In RD designs with a contin-
uous treatment, empirical researchers typically apply this RD
local Wald ratio to estimate the causal effect of the continuous
treatment. Causal identification and inference rely solely on the
mean shift of the continuous treatment variable. A few issues
arise with this practice. The first issue is interpretation—we
show in Section 3 that the LATE interpretation no longer holds
with a continuous treatment. Intuitively, there are an infinite
number of potential outcomes, and compliers are not immedi-
ately defined.

The second issue is potential weak identification or identi-
fication failure, when there is little or no mean change in the
treatment variable. In our empirical scenario, the discontinuous
relationship between the minimum capital requirement (the
policy instrument) and town size generates only a weak first-
stage discontinuity in the relationship between the average bank
capital and town size. Figure 1 (right) plots the mean capi-
tal against town size along with the 95% confidence intervals.
No significant changes are found in the mean capital at the
threshold. The standard fuzzy RD estimation does not directly
apply.

The third issue is policy relevance. The average level of
treatment may not always be the appropriate measure to look at
from a policy perspective. In practice, many polices target some
parts (e.g., top or bottom) of the treatment distribution or aim
to change some features of the distribution (e.g., reducing the
variance). The minimum capital requirement, the policy instru-
ment here, targets banks at the bottom of the capital distribution.
Similarly, many other treatment guidelines or policies frequently
target one or two tails of the treatment distribution. Examples
include the minimum or maximum recommended medication
dosage, minimum wages, maximum welfare benefits, govern-
ment transfers that are capped at certain levels, and the pollution
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Figure 1. Scatterplot (left) and the RD mean plot (right) of bank capital against town population.

ceiling set by the environmental protection agency. Focusing
on the mean treatment may miss the true sources of identi-
fication, that is, where the true changes are in the treatment
distribution.

In this article, we show that causal identification can be
achieved by using any changes in the distribution of the con-
tinuous treatment variable at the RD threshold. These include
not only the usual mean change, but also changes at various
points of the treatment distribution. By focusing on where the
true exogenous changes are in the treatment distribution, we
provide what are likely to be the most policy relevant treatment
effects.

We identify and provide inference for two types of causal
effects. The first is the LATE at a particular treatment quan-
tile. We refer to this quantile-specific LATE as Q-LATE. Q-
LATE captures treatment effect heterogeneity at different treat-
ment intensities, which the standard RD design fails to cap-
ture by solely focusing on the average treatment change in
the first stage. For example, Q-LATE can be useful if one
is interested in examining diminishing returns to treatment.
The second is a weighted average of Q-LATEs averaging over
the treatment distribution at the RD threshold (WQ-LATE).
Importantly, we discuss a double-robust approach and pro-
vide a WQ-LATE estimand that incorporates the standard RD
estimand, the RD local Wald ratio, as a special case. When
the standard RD estimand is valid, the proposed estimand
reduces to the standard RD estimand; when the standard RD
estimand is not valid, the proposed estimand continues to
be valid under our alternative assumptions. In addition, we
develop robust bias-correct inference and the asymptotic mean
squared error (AMSE) optimal bandwidths for estimating either
effect.

Our empirical application demonstrates the usefulness of
the proposed approach. The minimum capital requirement
shifts up the bottom of the capital distribution, but leads
to no mean change in bank capital. We cannot apply the
standard fuzzy RD estimation. However, taking advantage of
lower quantile changes in the capital distribution, we are able
to quantify the causal impacts of increased capital on the
banks’ short-run responses and long-run failure rates partic-
ularly among those banks targeted by the minimum capital
policy.

Our article adds to the growing literature of RD designs,
which focuses on binary treatments. See Imbens and Lemieux
(2008) for an early review of the RD literature. For more recent
reviews, see Cattaneo, Idrobo, and Titiunik (2020, 2021) and
Cattaneo, Titiunik, and Vazquez-Bare (2020). Note that our
model is different than the RD quantile treatment effect (RD
QTE) model discussed by Frandsen, Frölich, and Melly (2012).
The RD QTE model still requires a binary treatment along with
a continuous outcome. In contrast, our model requires a con-
tinuous treatment with either a discrete or continuous outcome.
RD QTE captures treatment effect heterogeneity at different
points of the outcome distribution, while our Q-LATE parame-
ter captures treatment effect heterogeneity at different points of
the treatment distribution. Caetano, Caetano, and Escanciano
(2020) discussed identification and estimation of RD designs
with a multivalued treatment variable. A continuous treatment
has been considered in the literature of regression kink (RK)
designs (Card et al. 2015). In RK designs, identification relies
on treatment assignment as a kinked function of the running
variable.

Our article is related to the nonseparable instrumental vari-
able (IV) literature with continuous endogenous covariates.
Identification in this literature typically requires a scalar unob-
servable (rank invariance) in either the first stage or the outcome
equation or both (see, e.g., discussion in Torgovitsky 2015;
D’haultfoeuille and Février 2015). In contrast, we allow for rank
similarity (instead of just rank invariance) in the first stage and
unrestricted multidimensional unobservables in the outcome
equation.

The rest of the article proceeds as follows. Section 2 dis-
cusses causal identification and the parameters of interest.
Section 3 proposes a causal estimand that incorporates the
standard fuzzy RD estimand as a special case. Section 4
describes estimation and specification testing. Section 5 pro-
vides robust bias-corrected inference and the AMSE optimal
bandwidths for the Q-LATE and WQ-LATE estimators. Sec-
tion 6 presents the empirical analysis. Concluding remarks are
provided in Section 7. All proofs, alternative inference based
on undersmoothing, details of estimating the biases, variances,
and AMSE optimal bandwidths of the proposed estimators,
as well as additional empirical results are gathered in the
appendix.
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2. Identification

In this section, we discuss nonparametric identification of RD
designs with a continuous treatment. To fix the idea, ignore the
running variable for now. Consider a continuous treatment T
and a binary “IV” Z. For an observation i, let Ti = ai + biZi,
where ai and bi are random coefficients. Typically, one would
estimate a constant coefficient regression in the first stage of the
linear IV model, where the constant coefficient of the binary Z
captures the exogenous change in the mean treatment. Here, we
show that under proper conditions, the random coefficient bi
captures exogenous changes in the distribution of the treatment,
which can be used for identification.

2.1. Basic Setup

Let Y ∈ Y ⊂ R be the outcome of interest, and T ∈ T ⊂ R

be the treatment. Let R ∈ R ⊂ R be the continuous running
variable that partly determines the treatment. Assume Y =
G (T, R, ε), where ε ∈ E ⊂ R

dε is allowed to be of arbitrary
dimension. Further assume that T has a reduced-form equation
T = q(R, U) with a reduced-form disturbance U.

Define Z ≡ 1 (R ≥ r0) for some known threshold value r0,
where 1(·) is an indicator function equal to 1 if the expression
in the parentheses is true and 0 otherwise. Given that Z is binary
and is a deterministic function of R, without loss of generality,
one can write T = q1(R, U1)Z + q0(R, U0) (1 − Z), where
Uz ∈ Uz ⊂ R, z = 0, 1. Let Tz ≡ qz(R, Uz), z = 0, 1 be
the potential treatment when Z is exogenously set at z. One
can then write T = T1Z + T0 (1 − Z) and correspondingly
U = U1Z + U0 (1 − Z).

In the following, we establish identification of the conditional
RD LATE given U = u, that is, E

[Yt1(u)−Yt0(u)

t1(u)−t0(u)
|U = u, R = r0

]
,

where the potential outcome Yt ≡ G (t, R, ε), t0 (u) ≡ q0(r0, u),
and t1 (u) ≡ q1(r0, u). It will be shown that the potential
treatment value change t1(u) − t0(u) captures the exogenous
change in the u quantile of the continuous treatment under
our identifying assumptions. We refer to this conditional RD
LATE given U = u as quantile-specific LATE or Q-LATE. We
further discuss identification of some weighted average of Q-
LATE averaging over the distribution of U at R = r0, which we
refer to as WQ-LATE.

Denote the conditional cumulative distribution function
(CDF) as F·|· (·, ·), the conditional probability density function
(PDF) as f·|· (·, ·) and the unconditional PDF as f· (·).

Assumption 1 (Quantile representation). qz (r, u), z = 0, 1, is
strictly monotonic in u for any r ∈ R, where R is an arbitrarily
small closed interval around r0. The conditional distribution of
Tz given R = r is continuous with a strictly increasing CDF
FTz|R(t, r).

Assumption 1 imposes monotonicity on the unobserved
heterogeneity in the first stage. Given Assumption 1, one can
normalize Uz to be FTz|R(Tz, R), so Uz ∼ Unif (0, 1). That is,
Uz is the conditional rank of Tz given R, and qz(r, u) is the
conditional u quantile of Tz given R = r.

Assumption 2 (Smoothness). qz (r, u), z = 0, 1, is continuous in
r ∈ R for any u ∈ [0, 1]. Either G (t, r, e) is continuous in all its
arguments, or it is a.e. continuous and bounded. fε|UzR (e, u, r)
is continuous in r ∈ R for any u ∈ [0, 1] and e ∈ E , where E is
compact. fR (r) is continuous and strictly positive around r0.

Assumption 3 (Local treatment rank invariance or similarity).
Conditional on R = r0, 1. U0 = U1; or more generally, 2.
U0|ε ∼ U1|ε.

Assumption 4 (First-stage). t1(u) �= t0(u) for at least some u ∈
[0, 1].

Assumption 2 assumes that the running variable has only
smooth effects on potential treatments and that the treatment,
running variable, and unobservables all impose smooth impacts
on the outcome. It further assumes that at a given rank of the
potential treatment, the distribution of the unobservables in
the outcome model is smooth near the RD threshold. The last
condition, the running variable is continuous with a positive
density around the RD threshold, is standard and is typically
required for RD designs (see, e.g., Hahn, Todd, and van der
Klaauw 2001).

Note that R, Uz, and ε are required to have compact
support, which serves as a regularity condition. The conti-
nuity conditions in Assumption 2 along with compact sup-
port ensures interchangeability of limit and integral (expec-
tation). It follows that E

[
G

(
qz(r, u), r, ε

) |Uz = u, R = r
] =∫

E G
(
qz (r, u) , r, ε

)
fε|UzR (e, u, r) de, z = 0, 1, is continuous in

r, which is the key to causal identification in our setup. Without
compact support, other alternative regularity conditions need to
be imposed under which one can interchange limit and integral.

Assumption 3 imposes local treatment rank restrictions. That
is, treatment rank invariance or similarity is required to hold
only at the RD cutoff. Assumption 3.1 requires units to stay at
the same rank of the potential treatment distribution right above
or below the RD threshold.

Assumption 3.2 assumes rank similarity, a weaker condition
than Assumption 3.1. Without conditioning on ε, U0 and U1
given R = r0 both follow a uniform distribution over the
unit interval, that is, U0| (R = r0) ∼ U1| (R = r0) by construc-
tion. Local rank similarity permits random “slippages” from the
common rank level in the treatment distribution just above or
just below the RD cutoff. Rank similarity has been proposed
to identify quantile treatment effects (QTEs) in IV models
(Chernozhukov and Hansen 2005). Unlike the IV QTE model,
we impose the similarity assumption on the ranks of potential
treatments, instead of the ranks of potential outcomes. In our
empirical analysis, Assumption 3.2 requires that the probability
for a bank to stay at the certain rank of the capital distribution
stays the same regardless of whether it is in a town with a
population just above or just below 3000.

Assumption 4 requires that the distribution of treatment
changes at R = r0. This is strictly weaker than the standard
RD design first-stage assumption that requires a mean change
in treatment, that is, E [T1|R = r0] �= E [T0|R = r0].

The above identifying assumptions have potentially test-
able implications. Under either Assumption 3.1 or 3.2,
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U0| (ε, R = r0) ∼ U1| (ε, R = r0). By Bayes’ theorem,
U0| (ε, R = r0) ∼ U1| (ε, R = r0) if and only if
ε| (U0 = u, R = r0) ∼ ε| (U1 = u, R = r0). Let X be
some observable component of ε, assuming such X
exists. Then X| (U0 = u, R = r0) ∼ X| (U1 = u, R = r0).
Further by Assumption 2, FX|UzR (x, u, r), z = 0, 1, is
continuous at r = r0. One can then test the condition
limr→r+

0
FX|UR (x, u, r) − limr→r−

0
FX|UR (x, u, r) = 0. Later

in Section 4, we discuss a convenient falsification test based on
this testable implication.

2.2. Identification Results

Lemma 1 presents some preliminary results to facilitate the
discussion of causal parameters and identification in our setup.

Lemma 1. Let Assumptions 1–3 hold. For any u ∈ [0, 1],

1. limr→r−
0

fε|TR
(
e, q0(r, u), r

) = limr→r+
0

fε|TR
(
e, q1(r, u), r

)
= limr→r0 fε|UR (e, u, r) for e ∈ E .

2. limr→r+
0
E [Y|U = u, R = r] − limr→r−

0
E [Y|U = u, R = r]

= ∫
(G (t1 (u) , r0, e) − G (t0 (u) , r0, e)) Fε|UR (de, u, r0) .

Given U = u, T can take on two limiting values as R →
r0, t0 (u) ≡ q0(r0, u) and t1 (u) ≡ q1(r0, u). By Assump-
tion 2, limr→r−

0
fε|TR

(
e, q0(r, u), r

) = fε|TR (e, t0 (u) , r0) and
limr→r+

0
fε|TR

(
e, q1(r, u), r

) = fε|TR (e, t1 (u) , r0). Lemma 1.1
shows T ⊥ ε|U, as R → r0, that is, conditional on the treatment
rank U, any potential changes in T as R → r0 are independent
of ε. Note that conditioning on U = u is implicit in the first
equality of Lemma 1.1, since given R = r, T and U follow a
one-to-one mapping by Assumption 1.

Lemma 1.1 can be seen as a local limiting version of the
Imbens and Newey (2009) type of identification condition.
The local independence makes U a (local) control variable as
defined by Imbens and Newey (2009). The defining feature of
any “control variable” is that conditional on this variable (along
with possibly other covariates), treatment is exogenous to the
outcome of interest.

Here, the “IV” Z ≡ 1 (R ≥ r0) is binary and is a deterministic
function of a possibly endogenous covariate R. Given U = u and
R = r, T is deterministic, that is, T = q1(r, u) for r ≥ r0, and
T = q0(r, u) for r < r0. Causal identification with this control
variable U is therefore local to the RD cutoff, which is a generic
feature of the RD design. In contrast, Imbens and Newey (2009)
focused on a continuous IV and aim to identify different causal
objects than ours.

Lemma 1.2 provides identification of the reduced-form effect
of the “IV” Z on Y , given U = u. It states that given U = u, the
conditional mean change in the outcome at the RD threshold is
causally related to the treatment change from t0 (u) to t1 (u). By
the potential outcome notation,∫

(G (t1 (u) , r0, e) − G (t0 (u) , r0, e)) Fε|UR (de, u, r0)

= E
[
Yt1(u) − Yt0(u)|U = u, R = r0

]
.

It follows that limr→r+
0
E [Y|U = u, R = r] − limr→r−

0
E [Y|U = u, R = r] =E

[
Yt1(u) − Yt0(u)|U = u, R = r0

]
. Based

on Lemma 1.2, we can define the causal parameters of interest,
Q-LATE and WQ-LATE.

Let U ≡ {u ∈ [0, 1]: |t1 (u) − t0 (u)| > 0}. For any u ∈ U ,
define Q-LATE as

τ (u) ≡
∫ G (t1 (u) , r0, e) − G (t0 (u) , r0, e)

t1 (u) − t0 (u)
Fε|UR (de, u, r0)

(1)

= E

[
Yt1(u) − Yt0(u)

t1 (u) − t0 (u)
|U = u, R = r0

]
, (2)

where G(t1(u),r0,e)−G(t0(u),r0,e)
t1(u)−t0(u)

is the (standardized) individual
treatment effect.

G(t1(u),r0,e)−G(t0(u),r0,e)
t1(u)−t0(u)

is causal, because T switches from
t0 (u) to t1 (u), while R and ε are held fixed. Q-LATE then
captures an average causal effect for individuals with treatment
rank U = u at the RD threshold. The denominator in Equation
(2) reflects the fact that T is not a binary variable and that con-
ditional on U = u and R = r0, there are two potential treatment
values, t0 (u) and t1 (u). Analogous to the Wald formula, Q-
LATE τ (u) is the ratio of the reduced-form effect of Z on Y to
that of Z on T given U = u. For example, if the true model for
Y given U = u is Y = b0 (u) + b1 (u) T + b2 (u) R + ε, then
τ (u) = b1 (u) for any u ∈ U .

Q-LATE captures how treatment effects vary with treatment
intensities of t0(u) and t1(u). For example, in our empirical
application, Q-LATE reveals how increased bank capital affects
bank outcomes at various levels of bank capital. In studying the
returns to medical utilization around the low birth weight cutoff
as in Almond et al. (2010), Q-LATE can be used to determine
whether there are diminishing returns to medical spending.
In exploring the effects of air pollution on life expectancy or
mortality as in Chen et al. (2013), Ebenstein et al. (2017), and
Fan, He, and Zhou (2020), Q-LATE can be used to determine
whether the effects of air pollution vary with pollution severity.

Further define the weighted average of Q-LATE, WQ-LATE,
as

π (w) ≡
∫
U

τ (u) w (u) du,

where w (u) is a properly defined weighting function such that
w (u) ≥ 0 and

∫
U w (u) du = 1.

When the function G (T, R, ε) is continuously differentiable
in its first argument, both parameters can be expressed as
weighted average derivatives of Y = G (T, R, ε) with respect
to T. In particular, following Lemma 5 of Angrist, Imbens, and
Graddy (2000),

τ (u) =
∫ (∫ t1(u)

t0(u)

∂

∂t
G (t, r0, e) dt

) (
�q (u)

)−1 Fε|UR (de, u, r0)

= E

[(∫ t1(u)

t0(u)

∂

∂t
G (t, r0, ε) dt

) (
�q (u)

)−1
∣∣∣∣U = u, R = r0

]

=
∫ t1(u)

t0(u)

E

[
∂

∂t
G (t, r0, ε)

∣∣∣∣U = u, R = r0

] (
�q (u)

)−1 dt,

where �q (u) ≡ t1(u)− t0(u). Q-LATE τ (u) is a weighted aver-
age derivative averaging over the change in T at a given quantile
u at the RD threshold. It follows that WQ-LATE π (w) is also a
weighted average derivative, averaging over both changes in T
at a given quantile u and over U ∈ U at the RD threshold.
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Define q+(u) ≡ limr→r+
0

q(r, u) and q−(u) ≡
limr→r−

0
q(r, u), where q(r, u) ≡ q0(r, u) (1 − Z) + q1(r, u)Z

is the conditional u quantile of T given R = r. These limits
exist, as q(r, u) is right and left continuous in r at r = r0
given smoothness of qz(r, u) by Assumption 2. Let m(t, r) ≡
E [Y|T = t, R = r], and define m+(u) ≡ limr→r+

0
m(q+(u), r)

and m−(u) ≡ limr→r−
0

m(q−(u), r). q±(u) and m±(u) can be
consistently estimated from the data.

Theorem 1 (Identification). Under Assumptions 1–4, for any u ∈
U , Q-LATE τ (u) is identified and is given by

τ (u) = m+(u) − m−(u)

q+(u) − q−(u)
. (3)

Further, WQ-LATE π (w) ≡ ∫
U τ (u) w (u) du is identified for

any known or estimable weighting function w (u) such that
w (u) ≥ 0 and

∫
U w (u) du = 1.

Note that in our setup, q+(u) = t1 (u) and q−(u) = t0 (u). In
addition, U and T follow a one-to-one mapping, so we condition
on T = q+(u) or T = q−(u) instead of U = u in the numerator
of Equation (3).

To aggregate Q-LATE, one simple weighting function is
equal weighting, that is, w (u) = 1/

∫
U 1du. One may choose

other properly defined weighting functions. w (u) is required to
be nonnegative; otherwise, when w (u) is allowed to be negative,
some weights will be greater than 1 and π (w) will be some
weighted difference of the average treatment effects among those
who change treatment levels at the RD threshold. The next
section shows that the standard RD estimand can be expressed
as a WQ-LATE, using a particular weighting function. In the
special case where the treatment effect is locally constant, the
weighting function does not matter. With any valid weighting
functions, one can identify the same homogeneous treatment
effect.

Remark 1 (Quantile effects). In addition to Q-LATE and
WQ-LATE, one may identify potential outcome distributions
and further local quantile treatment effects (LQTEs) at each
u ∈ U . In particular, under Assumptions 1–4, FYt1(u)|UR(y, u,
r0) = limr→r+

0
E

[
1
(
Y ≤ y

) |T = q+(u), R = r
]
, and

FYt0(u)|UR
(
y, u, r0

) = limr→r−
0
E

[
1
(
Y ≤ y

) |T = q−(u), R = r
]
.

When these potential outcome distributions are invertible,
one can invert them to obtain LQTEs, F−1

Yt1(u)|UR (υ, u, r0) −
F−1

Yt1(u)|UR (υ, u, r0), for υ ∈ (0, 1) and u ∈ U .

Remark 2 (Covariates). Our basic setup assumes away other
covariates other than the running variable. Rank invariance or
similarity may be more plausible when conditioning on relevant
covariates (see, e.g., discussion in Chernozhukov and Hansen
2005). Let Assumptions 1–4 hold conditional on covariates. Our
identification results then hold conditional on covariates. One
caveat is that given some covariates X = x, Q-LATE at any
treatment rank U (x) = u (x) is now covariate specific. One may
average the Q-LATE over U (x) to obtain the conditional WQ-
LATE given X = x. One may further average the conditional
WQ-LATE over the distribution of X at R = r0 to obtain an
unconditional WQ-LATE.

3. Double-Robust Identification

In this section, we discuss the standard RD estimand and show
that it can be expressed as a WQ-LATE, using a particular
weighting function. We then discuss a double-robust identifica-
tion approach and propose a causal estimand that incorporates
the standard RD estimand as a special case. See, for example,
Arkhangelsky and Imbens (2021) for a double-robust approach
to causal effects in panel data models.

3.1. Standard RD Estimand

Consider the standard RD estimand in the form of the standard
local Wald ratio, and rewrite it as follows:

πRD ≡
limr→r+

0
E [Y|R = r] − limr→r−

0
E [Y|R = r]

limr→r+
0
E [T|R = r] − limr→r−

0
E [T|R = r]

=

∫ 1
0

(
limr→r+

0
E [Y|U = u, R = r]

− limr→r−
0
E [Y|U = u, R = r]

)
du∫ 1

0

(
limr→r+

0
q (r, u) − limr→r−

0
q (r, u)

)
du

=
∫
U

τ (u)
�q (u)∫

U �q (u) du
du, (4)

where the first equality follows from T = q(R, U) and
interchanging limit and integral, which is allowed under our
assumptions, and the second equality follows from Lemma 1.2
and the fact that t1(u) = limr→r+

0
q (r, u) and t0(u) =

limr→r−
0

q (r, u). Therefore, under our assumptions, the stan-
dard RD estimand identifies a weighted average of Q-LATEs,
using weights wRD (u) ≡ �q (u) /

∫
U �q (u) du.

To ensure wRD (u) ≥ 0 over U , it is necessary that �q (u) ≥
0 or �q (u) ≤ 0 for all u ∈ U . Otherwise, when �q (u)

can switch signs, πRD would be undefined if the denominator∫
U �q (u) du = 0, and πRD would be a weighted difference

of the average treatment effects for units with positive treat-
ment changes and those with negative treatment changes if∫
U �q (u) du �= 0.

Assumption 3b (Monotonicity). Pr (T1 − T0 ≥ 0|R = r0) = 1
or Pr (T1 − T0 ≤ 0|R = r0) = 1.

Assumption 3b requires that treatment T is weakly increas-
ing or weakly decreasing almost surely when crossing the RD
threshold. Assumption 3b implies that �q (U) ≥ 0 or �q (U) ≤
0 holds almost surely.

Unlike Assumption 3, which imposes rank restrictions,
Assumption 3b imposes a sign restriction on the treatment
changes at the RD threshold. Angrist, Imbens, and Graddy
(2000) made a similar assumption in identifying a general
simultaneous equations system with binary IVs.

When Assumption 3 local treatment rank invariance or sim-
ilarity does not hold, Q-LATE involved in Equation (4) does not
have a causal interpretation. However, the RD estimand can still
identify a causal parameter under Assumption 3b monotonicity.
We formally state this result in Lemma 2.

Lemma 2. Let Assumptions 1, 2, 3b, and 4 hold. Then πRD

identifies a weighted average effect of T on Y at R = r0.
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The exact form of the weighted average effect is provided in
the proof of Lemma 2 in the appendix. We show that in this
case, the standard RD estimand with a continuous treatment
identifies a weighted average of individual treatment effects
among those individuals who change their treatment intensity
at the RD threshold, that is, those having t1(u1) − t0(u0) > 0
(or t1(u1) − t0(u0) < 0). The individual treatment effect is
given by G(t1(u1),r0,e)−G(t0(u0),r0,e)

t1(u1)−t0(u0)
, and the weight is proportional

to the individual’s treatment change, t1(u1)− t0(u0). When fur-
ther G(T, R, ε) is continuously differentiable in T, the identified
effect can be expressed as a weighted average derivative of Y
w.r.t. T, as shown in the proof of Lemma 2.

3.2. Double-Robust Identification

The discussion so far suggests that the standard RD estimand
in general requires Assumption 3b monotonicity in order to
be causal. Note that the monotonicity and rank assumptions
impose different restrictions on the first-stage heterogeneity.
Monotonicity imposes a sign restriction on T1 − T0 at R =
r0, while the rank assumption imposes a rank restriction on
T1 and T0 at R = r0. Neither assumption implies the other.
It is therefore useful to have an estimand that is valid under
either assumption. Note that the common empirical practice of
focusing on some subpopulation for which researchers believe
the treatment is more affected still requires either monotonicity
or rank similarity to hold for such subpopulation.

Theorem 2 (Double-robust identification). Let Assumptions 1, 2,
and 4 hold. Then under either Assumption 3 or 3b,

π∗ ≡
∫
U

m+(u) − m−(u)

q+(u) − q−(u)

|q+(u) − q−(u)|∫
U |q+(u) − q−(u)|du

du (5)

identifies a weighted average effect of T on Y at R = r0.

Theorem 2 provides a causal estimand that is valid under
either the monotonicity or rank assumption. When mono-
tonicity holds, π∗ = πRD. When the rank assumption holds,
π∗ = π (w∗) ≡ ∫

U τ (u) w∗ (u) du for w∗ (u) ≡ |�q(u)|∫
U |�q(u)|du ,

that is, π∗ identifies a WQ-LATE. Either way, π∗ identifies
a weighted average of individual treatment effects given by
G(t1(u1),r0,e)−G(t0(u0),r0,e)

t1(u1)−t0(u0)
among those individuals who change

their treatment intensities at the RD threshold.
The two alternative assumptions put different restrictions on

how individuals can change treatment intensities when crossing
the RD threshold. Monotonicity requires that U0 and U1 are
such that t1(U1) − t0(U0) ≥ 0 or t1(U1) − t0(U0) ≤ 0 almost
surely, that is, individuals change treatment in one direction
when crossing the RD threshold. In contrast, the rank assump-
tion requires that given ε, U0 and U1 have the same conditional
distribution at R = r0, that is, the probability for an individual to
stay at a certain rank of the treatment distribution stays the same
when crossing the RD threshold. Our estimand π∗ provides a
robust way to aggregate the individual treatment effects.

4. Estimation

The proposed estimands for Q-LATE and WQ-LATE involve
conditional means and quantiles at a boundary point. Following

the standard practice of the RD literature, we estimate Q-LATE
and WQ-LATE by local linear mean and quantile regressions.

For simplicity, we use the same kernel function K (·) for all
estimation. Let the bandwidths for T and R be hT and hR, respec-
tively. The bandwidth sequences hR and hT go to zero as the
sample size n → ∞. Denote as θ̂ the estimate of any parameter
θ . Given a sample of n iid observations {(Yi, Ti, Ri)}n

i=1 from
(Y , T, R), we estimate Q-LATE τ(u) and WQ-LATE π∗ by the
following procedure.

Step 1: Let U(l) ≡ {u1, u2, ..., ul} be the set of equally spaced
quantiles over the unit interval (0, 1). For u ∈ U(l), estimate
q+(u) by q̂+(u) ≡ â0 from the local linear quantile regres-
sion

(̂a0, â1) = arg min
a0,a1

∑
{i: Ri≥r0}

K
(

Ri − r0
hR

)
× ρu (Ti − a0 − a1 (Ri − r0)) ,

where ρu(α) = α(u − 1(α < 0)) is the standard check
function. Estimate q−(u) similarly using observations below
r0.

Step 2: Let Ũ ≡ {
u ∈ U(l) : |�q̂(u)| > εn

}
, where �q̂(u) ≡

q̂+(u) − q̂−(u) and the trimming parameter εn → 0 is a
positive sequence satisfying the conditions in Lemma 6 in
Appendix B. For all u ∈ Ũ , estimate m+ (u) by m̂+ (u) ≡ b̂0
from the local linear regression

(̂
b0, b̂1, b̂2

)
= arg min

b0,b1,b2

∑
{i: Ri≥r0}

K
(

Ri − r0
hR

)
K

(
Ti − q̂+(u)

hT

)
× (

Yi − b0 − b1 (Ri − r0) − b2
(
Ti − q̂+(u)

))2 .

Estimate m−(u) similarly by replacing q̂+(u) with q̂−(u) and
using observations below r0.

Step 3: Estimate τ(u) by the plug-in estimator τ̂ (u) =
m̂+(u)−m̂−(u)
q̂+(u)−q̂−(u)

for u ∈ Ũ .

Step 4: Estimate π∗ by π̂∗ = ∑
u∈Ũ τ̂ (u)

|�q̂(u)|∑
u∈Ũ |�q̂(u)| .

Our identification theory requires trimming out treatment
quantiles where there are no changes at the RD threshold, that is,
�q(u) = 0, whereas in practice we do not know the true �q(u).
To avoid any pretesting problems, we trim out all quantiles such
that |�q̂(u)| ≤ εn for some chosen εn. Lemma 6 in Appendix B
shows that when εn satisfies the required conditions, this trim-
ming procedure is asymptotically equivalent to trimming out
those treatment quantiles where the true changes are zero and
hence preserves the asymptotic properties of our estimator. If
one wishes to focus on quantiles such that |�q(u)| > c0 for
some small c0 > 0, then the trimming parameter can be defined
as cn = c0 + εn.

In practice, one can choose εn = maxu∈U(l) se
(
�q̃(u)

) ×
1.96, where �q̃(u) is a preliminary Step 1 estimator of the
treatment quantile change, using the bandwidth h̃R such that
h̃R/hR → 0 and nh̃2

R/hR → ∞. We discuss the choice
of hR in Section 5. The associated standard errors satisfy
se(�q̃(u)) = Op

((
nh̃R

)−1/2)
> se(�q̂ (u)) = Op

((
nhR

)−1/2).
By this procedure, insignificant estimates (at the 5% significance
level) of �q̂(u) along with some significant but small estimates
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will be trimmed out. Since supu∈U
∣∣|�q̂(u)| − |�q(u)|∣∣ =

Op((nhR)−1/2), the conditions for εn given in Lemma 6 are
satisfied. Consider specifically the bandwidth sequences hR =
cn−a and h̃R = cn−b for some constants 0 < a, b < 1 and c > 0.
The required conditions for εn are satisfied when choosing b
such that a < b < (a + 1)/2.

Recall that our identifying assumptions imply a testable con-
dition limr→r+

0
FX|UR (x, u, r) − limr→r−

0
FX|UR (x, u, r) = 0 for

some observable covariate X. This suggests that one may test
that Q-LATEs or WQ-LATEs on the covariate distribution are
zero. In practice, one can use 1 (X ≤ x) as an outcome and
follow the above estimation procedure to perform falsification
tests. Standard multiple testing adjustments may be applied if
needed. Any false significant effects on the covariate distribution
would cast doubt on the validity of the identifying assumptions.

More formally, one may follow the idea of the RD dis-
tributional tests of Shen and Zhang (2016) to implement a
Kolmogorov–Smirnov type of test. Such a test compares the
estimated conditional distributions limr→r+

0
FX|UR (x, u, r) and

limr→r−
0

FX|UR (x, u, r). Developing a full-blown test is beyond
the scope of the current article and is left for future research.

5. Inference

The proposed estimators have several distinct features, which
make analyzing their asymptotic properties challenging. First,
the local polynomial estimator in Step 2 involves a continuous
treatment variable T, in addition to the running variable R.
Evaluating T over its interior support and evaluating R at the
boundary point r0 complicates the analysis. Second, we need to
account for the sampling variation of q̂±(u) from Step 1, which
appears in both the numerator and denominator of τ̂ (u), as well
as in the weighting function ŵ∗ (u) for π̂∗. Third, our estimation
involves a trimming procedure that is based on the estimated
quantile change �q̂(u). We overcome these complications by
extending the results of Kong, Linton, and Xia (2010) and
Qu and Yoon (2015). Qu and Yoon (2015) provided uniform
convergence results for local linear quantile regressions, while
Kong, Linton, and Xia (2010) established uniform convergence
results for local polynomial estimators.

To establish our inference procedure, we derive the asymp-
totically linear representation and asymptotic normality of the
estimators τ̂ (u) and π̂∗. We show that, similar to the stan-
dard RD local polynomial estimator, the large sample distri-
butional approximations involve leading biases, which depend
on changes in the curvatures of the conditional quantile and
mean functions in Step 1 and Step 2 of estimation. There are two
common approaches to removing these leading biases, under-
smoothing and bias correction. The undersmoothing approach
uses a bandwidth sequence that goes to zero fast enough with the
sample size, so that the bias is asymptotically negligible relative
to the standard error. Nevertheless, it is known that this under-
smoothing approach prevents a lot of bandwidth choices used in
practice. This section focuses on the bias correction approach.
Undersmoothing results are presented in Appendix B.2.

We develop robust inference for our bias-corrected estima-
tors, similar to the robust bias-corrected inference of Calonico,
Cattaneo, and Titiunik (2014) in the context of the standard

RD design. Calonico, Cattaneo, and Farrell (2018, 2019, 2020)
further formally established higher order improvements of such
an approach. Our robust inference takes into account the added
variability due to the bias correction in deriving large sam-
ple distributions. We also present the optimal bandwidths for
both the Q-LATE and WQ-LATE estimators by minimizing the
AMSE. The robust confidence intervals for the bias-corrected
estimators deliver valid inference when these AMSE optimal
bandwidths are used.

We impose the following assumptions for asymptotics.

Assumption 5 (Asymptotics). 1. For any t ∈ Tz, z = 0, 1, r ∈ R,
and u ∈ U , fTzR(t, r) is bounded and bounded away from
zero, and has bounded first order derivatives with respect to
(t, r); ∂ jqz(r, u)/∂rj is finite and Lipschitz continuous over
(r, u) for j = 1, 2, 3; qz(r0, u) and ∂qz(r0, u)/∂u are finite and
Lipschitz continuous in u.

2. For any t ∈ Tz, z = 0, 1, and r ∈ R,
E [G(Tz, R, ε)|Tz = t, R = r] has bounded fourth order
derivatives; the conditional variance V

[
G(Tz, R, ε)|Tz =

t, R = r
]

is continuous and bounded away from zero; the
conditional density fTzR|Y(t, r, y) is bounded for any y ∈ Y .
E

[∣∣Y − E [Y|Tz, R]
∣∣3]

< ∞ for z = 0, 1.
3. The kernel function K is bounded, positive, compactly sup-

ported, symmetric, having finite first-order derivative, and
satisfying

∫ ∞
−∞ v2K(v)dv > 0.

Assumption 5.1 imposes sufficient smoothness conditions
to derive the asymptotically linear representations of q̂±(u). In
particular, the bounded joint density implies a compact support
where the stochastic expansions of q̂±(u) hold uniformly over
u. Together with the smoothness conditions on qz(r, u), the
remainder terms in the stochastic expansions are controlled
to be small. Assumption 5.2 imposes additional conditions to
derive the asymptotically linear representation of Ê [Y|T, R]
and asymptotic normality of our estimators. Assumption 5.3
provides the standard regularity conditions for the kernel
function.

The asymptotically linear representations and asymptotic
normality of the main estimators τ̂ (u) and π̂∗ are presented
in Appendix B, followed by the inference theory based on
undersmoothing. In Sections 5.1 and 5.2, we present the robust
bias-corrected inference for Q-LATE τ(u) and WQ-LATE π∗,
respectively.

5.1. Inference on Q-LATE

Denote the leading bias for τ̂ (u) as h2
RBRτ (u) + h2

TBTτ (u). The
exact forms of BRτ (u) and BTτ (u) are presented in Equations
(B.8) and (B.9) in Appendix B, respectively. We propose the bias-
corrected estimator for τ(u)

τ̂ bc(u) ≡ τ̂ (u) − (
h2

RB̂Rτ (u) + h2
T B̂Tτ (u)

)
,

where B̂Rτ (u) and B̂Tτ (u) are consistent estimators for BRτ (u)

and BTτ (u), respectively.
Bias correction reduces biases, but also introduces variabil-

ity. When the added variability of the estimated bias is not
accounted for, the empirical coverage of the resulting confidence
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interval can be well below their nominal target, which implies
that conventional confidence intervals may substantially over-
reject the null hypothesis of no treatment effect. We there-
fore present the asymptotic distributions of the bias-corrected
estimators τ̂ bc(u), taking into account the sampling variation
induced by bias correction.

Theorem 3 (Asymptotic distribution of τ̂ bc(u)). Let Assump-
tions 1–5 hold. Let the bandwidths for τ̂ (u) be hR = cRh, hT =
cTh, the bandwidths used for the bias estimation be bR = cRb
and bT = cTb, for some positive constants cR, cT , and positive
sequences h = hn → 0 and b = bn → 0. If h/b → ρ ∈ [0, ∞],
n min{h6, b6} max{h2, b2} → 0, n min{h2, b6h−4} → ∞, and
nh3 max{1, h6/b6} → ∞, then for any u ∈ U ,

τ̂ bc(u) − τ(u)√
Vbc

τ ,n(u)

d−→ N (0, 1) , where

Vbc
τ ,n(u) ≡

(
Vτ (u)

nh2 + VBτ
(u)

nb6h−4 + Cτ (u; ρ)

nhb

)
1

cRcT
.

The exact forms of Vτ (u), VBτ
(u) and Cτ (u; ρ) are given in

Equations (B.1), (B.2), and (B.3) in Appendix B, respectively.

The variance Vbc
τ ,n(u) consists of three terms: Vτ (u) is from

the variance of the actual estimator τ̂ (u), VBτ
(u) is from the

variance of the bias estimator h2
RB̂Rτ + h2

T B̂Tτ , and Cτ (u; ρ) is
from the covariance between τ̂ (u) and h2

RB̂Rτ + h2
T B̂Tτ . The-

orem 3 incorporates three limiting cases depending on ρ, the
limiting value of h/b. When h/b → 0, τ̂ (u) is first-order and
the bias estimator is of smaller order. Thus, the variance reduces
to Vbc

τ ,n(u) = Vτ (u)/(nh2cRcT). When h/b → ρ ∈ (0, ∞),
both τ̂ (u) and the bias estimator contribute to the asymptotic
variance. For example, when ρ = 1, Vbc

τ ,n(u) = (Vτ (u) +
VBτ

(u) + Cτ (u; 1))/(nh2cRcT). When h/b → ∞, the bias
estimator is first-order and τ̂ (u) is of smaller order, so Vbc

τ ,n(u) =
VBτ

(u)/(nb6h−4cRcT).
Without loss of generality, we assume that the bandwidths

hR = cRh and hT = cTh are of the same order. We show in
Lemma 4 in Appendix B that hR and hT have the same first-
order impact on τ̂ (u). This is because the local linear estimator
of E [Y|T, R] in Step 2 dominates the first-order asymptotically
linear representation, and the quantile regression of T on R in
Step 1 is of smaller order. In addition, we derive the optimal
bandwidths that minimize the AMSE of τ̂ (u) in Theorem 4.
The resulting AMSE optimal bandwidths are of the same order
n−1/6.

Theorem 4 (AMSE optimal bandwidth for τ̂ (u)). Let Assump-
tions 1–5 hold. If hR = hRn → 0, hT = hTn →
0, nhRh2

T → ∞, nhTh5
R → c ∈ [0, ∞), nhRh5

T →
c ∈ [0, ∞), and h2

R/hT → 0, then the mean squared
error of τ̂ (u) is E

[(
τ̂ (u) − τ(u)

)2
]

= (
h2

RBRτ (u) +
h2

TBTτ (u)
)2 + (nhRhT)−1 Vτ (u) + o

(
h4

R + h4
T + (nhRhT)−1);

further if BRτ (u) �= 0 and BTτ (u) �= 0, the bandwidths that
minimize the AMSE are h∗

Rτ (u) = c∗
R(u)n−1/6 and h∗

Tτ (u) =
c∗

T(u)n−1/6, where c∗
R(u) = (Vτ (u)/8)1/6(|BTτ (u)/B5

Rτ (u)|)1/12

and c∗
T(u) = (Vτ (u)/8)1/6(|BRτ (u)/B5

Tτ (u)|)1/12.

The AMSE optimal bandwidths for τ̂ (u) satisfy the band-
width conditions specified in Theorem 3. Therefore, one can
apply the above AMSE optimal bandwidths and then conduct
the bias-corrected robust inference provided in Theorem 3.

The biases, robust variances, and the AMSE optimal band-
widths can be consistently estimated by plug-in estimators. The
biases and variances depend on the second-order derivatives of
q±(u) and m±(u), the conditional variance of Y given (T, R),
the density fTR, and some constants determined by the kernel
function. These involved parameters can be estimated by local
quadratic quantile and mean regressions as well as kernel den-
sity estimators. Details of the plug-in estimators are provided in
Appendix C.

The terms due to the bias correction, VBτ
(u) and Cτ (u; ρ),

depend on Vτ (u) and some kernel-specific constants. As a
result, Vbc

τ ,n(u) only depends on Vτ (u) and some constants,
which implies that estimating the robust variance is not com-
putationally more demanding than estimating the conventional
variance Vτ (u) without the bias correction. For example, for
the Uniform kernel and ρ = 1, Vbc

τ ,n(u) = 13.89Vτ (u)/(nh2).
Imbens and Kalaynaraman (2012) and Arai and Ichimura
(2018) also used similar kernel-specific constants.

5.2. Inference on WQ-LATE

Denote the leading bias for π̂∗ as h2
RBRπ + h2

TBTπ . The exact
forms of BRπ and BTπ are given in Equations (B.11) and (B.12)
in Appendix B, respectively. We propose the bias-corrected
estimator for π∗

π̂bc ≡ π̂∗ − (
h2

RB̂Rπ + h2
T B̂Tπ

)
,

where B̂Rπ and B̂Tπ are consistent estimators of BRπ and BTπ ,
respectively.

Theorem 5 (Asymptotic distribution of π̂bc). Let Assumptions 1,
2, either 3 or 3b, 4 and 5 hold and l−1√nhR → 0. Let the
bandwidths for π̂∗ be hR = cRh, hT = cTh, the bandwidths
used for the bias estimation be bR = cRb and bT = cTb,
for some positive constants cR, cT , and positive sequences h =
hn → 0 and b = bn → 0. If h/b → ρ ∈ [0, ∞],
n min{h5, b5} max{h2, b2} → 0, n min{h, b5h−4} → ∞, and
nh4 max{1, h5b−5} → ∞, then

π̂bc − π∗√
Vbc

π ,n

d−→ N (0, 1) , where

Vbc
π ,n ≡

(
Vπ

nh
+ VBπ

nb5h−4 + Cπ (ρ)

nb2h−1

)
1
cR

. (6)

The exact forms of Vπ , VBπ
, and Cπ (ρ) are given in Equations

(B.4), (B.6), and (B.7) in Appendix B, respectively.
Instead of letting cT be a constant, suppose hT = cTh where

cT = cTn is a positive sequence satisfying cTn → 0 and hc−3
Tn →

0. Equation (6) still holds.

Vbc
π ,n consists of three terms: Vπ is from the variance of the

actual estimator π̂∗, VBπ
is from the variance of the bias estima-

tor h2
RB̂Rπ + h2

T B̂Tπ , and Cπ (ρ) is from the covariance between
π̂∗ and h2

RB̂Rπ + h2
T B̂Tπ . Similar to Theorem 3, Theorem 5
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incorporates three limiting cases depending on ρ. When h/b →
ρ = 0, π̂∗ is first-order and the bias estimator is of smaller order.
Then Vbc

π ,n ≡ Vπ/ (nhcR). When h/b → ρ ∈ (0, ∞), both
π̂∗ and the bias estimator contribute to the asymptotic variance.
When h/b → ∞, the bias estimator is first-order and π̂∗ is of
smaller order. Then Vbc

π ,n ≡ VBπ
/(nb5h−4cR).

Note that Q-LATE τ(u) is a function of T and R, while
WQ-LATE π∗ is a weighted average of τ(u) averaging over
T and hence is only a function of R. The asymptotic theory
for π̂∗ in Lemma 5 of Appendix B shows that the leading
variance is of order 1/

√
nhR. In theory, one can choose a small

bandwidth for T, in particular hT = cTnh for cTn → 0,
such that the leading bias associated with hT , h2

TBTπ , becomes
first order ignorable compared with the leading bias associated
with hR, h2

RBRπ . The leading bias of π̂∗ can then be simplified
to h2

RBRπ . It follows that the first-order asymptotic property
of π̂∗ will not depend on hT . These are features of the gen-
eral marginal integration or partial mean of the nonparamet-
rically estimated conditional mean function (see, e.g., Newey
1994). Nevertheless, h2

TBTπ might not be ignorable in finite
samples. The finite-sample performance of the bias-corrected
estimator could be compromised, if the bias term associated
with hT was ignored. Our bias-corrected estimator π̂bc and
the associated robust inference therefore take into account
h2

T B̂Tπ .
The following theorem presents the optimal bandwidth that

minimizes the AMSE of π̂∗.

Theorem 6 (AMSE optimal bandwidth for π̂∗). Let Assump-
tions 1, 2, either 3 or 3b, 4 and 5 hold and l−1√nhR → 0. If
hR = hRn → 0, hT = hTn → 0, nhRh3

T → ∞, nh5
R → c ∈

[0, ∞), and nhRh4
T → c ∈ [0, ∞), then the mean squared error

of π̂∗ is E
[(

π̂∗ − π∗)2
]

= h4
RB2

Rπ + h4
TB2

Tπ + (nhR)−1 Vπ +
o
(
h4

R + h4
T + (nhR)−1); further if nhRh4

T → 0, BRπ �= 0, and
BTπ �= 0, then the bandwidth that minimizes the AMSE is
h∗

Rπ = (
Vπ/

(
4B2

Rπ

))1/5 n−1/5.

The optimal bandwidth h∗
Rπ is derived under the scenario

that the leading bias associated with hT , h2
TBTπ , is the first

order asymptotically ignorable. Following Horowitz (2001), we
suggest a rule-of-thumb bandwidth for hT . In particular, hrot

Tπ =
h∗

Rπ n−1/30σT/σR, where σR and σT are the standard deviations
of R and T, respectively. This rule-of-thumb bandwidth satisfies
the conditions nh∗

Rπ h3
T → ∞ and nh∗

Rπ h4
T → 0 in Theorem 6.

We can use h∗
Rπ and hrot

Tπ to conduct bias-corrected robust
inference provided in Theorem 5.

Remark 3. Lemma 4 and 5 in Appendix B present the asymp-
totically linear representations of τ̂ (u) and π̂∗, respectively. We
compute the asymptotic unconditional MSE, Imbens and Kalay-
naraman (2012). In contrast, Calonico, Cattaneo, and Titiunik
(2014), Arai and Ichimura (2018), and Calonico, Cattaneo, and
Farrell (2019) derived the asymptotic conditional MSE given the
sample data. In large samples, these two approaches, approxi-
mating the unconditional or conditional MSE, are equivalent.
In finite samples, the resulting confidence interval based on the
conditional variance can be larger or smaller than the confi-
dence interval based on the unconditional variance.

The unconditional MSE simplifies the asymptotic analysis
for our multi-step estimators. Note that the Q-LATE estimator
τ̂ (u) involves two continuous regressors R and T. In contrast,
the standard RD estimator for a binary treatment has only
one continuous regressor R. Based on the asymptotically lin-
ear representation of τ̂ (u), the leading unconditional bias is a
linear function of the unconditional biases of Step 1 quantile
regression and Step 2 mean regression. It follows that the leading
unconditional bias of π̂∗ is also a simple linear function of the
biases of q̂±(u) and m̂±(u).

Remark 4. Calonico, Cattaneo, and Farrell (2019) showed that
inclusion of covariates in the standard RD design can increase
efficiency. Intuitively, the efficiency gain may carry over to our
WQ-LATE estimator if the covariate adjustment is made addi-
tively in a linear-in-parameters way. A full theoretical develop-
ment can be interesting for future research.

6. Empirical Analysis

This section applies the proposed approach to quantify the
impacts of bank capital on the banks’ short-run responses and
long-run failure probabilities. Are banks less likely to fail when
they hold more capital? Answering this question can shed light
on the role of higher capital in promoting a stable financial
system. The minimum capital requirement in the early 20th-
century United States provides a unique quasi-experiment that
allows one to nonparametrically identify the true causal impacts
of bank capital. Back then, bank runs and banking panics were
prevalent. The minimum capital requirement was set in place
to prevent bank from holding too little capital and to thereby
promote banking stability.

As shown in Figure 1, the requirement depends on town sizes
and changes abruptly at the town population threshold 3000.
The required minimum capital is $25,000 for a bank located in
a town with a population less than 3000, and jumps to $50,000
for a bank located in a town with a population at or above 3000.
There are two other population thresholds, 6000 and 50,000, at
which the minimum capital requirement changes. Our empir-
ical analysis focuses on the population threshold 3000, since
about 88% of banks in our sample are located in towns with a
population below 6000.

Let the continuous treatment T be bank capital, and the run-
ning variable R be town population. Furthermore, let Z indicate
whether a bank is located in a town with 3000 or more people.
We consider three outcomes of interest (Y): total assets, leverage,
and an indicator of whether a bank suspended its operation in
the following 24 years. Leverage is defined as the ratio of a bank’s
total assets to capital, which is a measure of the amount of risk a
bank engages in. Logged values are used for bank capital, assets
and leverage, as these variables have rather skewed distributions.
We estimate the impacts of the minimum capital requirement
on the distribution of bank capital (i.e., the first stage impact
of Z on T), and further the impacts of higher capital on the
three outcomes of interest (i.e., the impacts of T on Y). We also
quantify any possible treatment effect heterogeneity at various
levels of bank capital.

Our data come from three sources: the annual reports of
the office of the comptroller of the currency (OCC), Rand
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McNally’s Bankers Directory, and the U.S. population census.
Our full estimation sample consists of 822 banks in 45 towns,
among which 717 are below the relevant policy threshold and
105 are above. In addition to T, Y , and R described above,
we gather information on county characteristics that measure
their business and agricultural conditions, including the per-
centage of black population, the percentage of farmland, and
manufacturing output per capita per square miles. These covari-
ates (X) are used for validity checks. More information on
the data along with sample summary statistics is provided in
Appendix D.1.

It is worth mentioning that in our sample, less than 1% of
the banks below the regulatory threshold hold the required
minimum capital, $25,000, and less than 2% of the banks above
the threshold hold the required minimum capital, $50,000. Lack
of mass points at the required minimum capital levels ensures
that our Assumption 1 holds.

6.1. Estimation Results

Figure 2 visualizes the estimated quantile curves of log capital
above or below the policy threshold (left) and the estimated
quantile changes (right) along with their 95% point-wise con-
fidence bands. These estimates are generated using ĥ∗

Rπ =
1462.76. For simplicity, all estimates in the empirical analysis
use uniform kernels, unless otherwise stated. Consistent with
the visual evidence in Figure 1, Figure 2 suggests that significant

changes only occur at roughly the bottom 30 percentiles of the
distribution of log capital. The estimated changes are also larger
at lower quantiles. In contrast, the estimated mean change in log
capital using ĥ∗

Rπ = 1462.76 is 0.107 with a standard error of
0.148. The estimated mean change by the default CCT rdrobust
package (using ĥR = 803.58 and a triangular kernel) is 0.141
with a standard error of 0.171. The lack of a significant mean
change in bank capital suggests that the standard fuzzy RD
design does not apply.

Figure 3 illustrates the bias-corrected estimates of Q-LATEs
at different quantiles along with their 95% confidence intervals.
The main bandwidths used for estimation are ĥ∗

Rπ
= 1426.76

and ĥrot
Tπ = 0.441. The bandwidth for bias estimation is set

to be 4.5n−1/8 = 2308.67, corresponding to ρ = 0.618 (See
Appendix C.3 for details). A preliminary bandwidth 3/4̂h∗

Rπ
=

1097.07 is used to determine the trimming thresholds. Alter-
native results based on undersmoothing or bootstrapped stan-
dard errors (with or without being clustered at the town level)
are presented in Appendix D.2. Clustering seems to have little
impacts based on the bootstrapped standard errors. Our analyt-
ical standard errors therefore do not take into account possible
clustering at the town level.

As shown in Figure 3, the estimated Q-LATEs for log assets
are around 1 at various low quantiles of log capital. All estimates
are significant at the 1% level. The corresponding WQ-LATE is
estimated to be 1.034, which is also significant at the 1% level,
so on average, a 1% increase in capital leads to roughly a 1%

Figure 2. Estimated quantile curves of bank capital above and below the population threshold 3,000 (left) and quantile changes (right).

Figure 3. Bias-corrected estimates of Q-LATEs at different quantiles.
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Figure 4. Bias-corrected estimates of WQ-LATEs by different bandwidths.

Figure 5. Bias-corrected estimates of Q-LATEs on covariates (first moments).

increase in assets among those banks at lower quantiles of the
capital distribution. The estimated impacts on log leverage and
those on the long-run risk of suspending operation are small and
insignificant.

Figure 4 further plots the bias-corrected estimates of WQ-
LATEs (along with the 95% confidence intervals) against dif-
ferent bandwidth choices. The point estimates of WQ-LATEs
are robust to a wide range of bandwidth choices, even though
as expected, the confidence intervals get wider as the band-
width gets smaller. Calonico, Cattaneo, and Farrell (2020) devel-
oped a new bandwidth selector for robust bias-corrected con-
fidence intervals with minimal coverage error, in the con-
text of the standard RD design. A formal development of

such coverage-error optimal bandwidths for the Q-LATE and
WQ-LATE estimators is out of the scope of this article, but
we can implement the rule-of-thumb bandwidth suggested in
Calonico, Cattaneo, and Farrell (2020), that is, the rescaled
AMSE optimal bandwidth n−1/20ĥ∗

Rπ = 1045.75. As shown in
Figure 4, at this bandwidth, the point estimates of WQ-LATEs
are largely consistent with those estimates at our AMSE opti-
mal bandwidth, even though the confidence intervals are much
wider.

Overall, our empirical analysis suggests that while the min-
imum capital requirement induces small banks (i.e., banks
at the bottom 30% of the capital distribution) to hold more
capital, these banks adjust their assets proportionately. That
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Figure 6. Bias-corrected estimates of Q-LATEs on covariates (second moments).

Figure 7. Histogram and the empirical density of town population.

is, banks simply scale up without a ratio regulation. As a
result, their leverages and long-run risk of failure remain
almost unchanged. These results help us better understand the
frequent bank runs and banking panics prior to the Great
Depression.

6.2. Validity Checks

Validity of our estimates requires our identifying assumptions
to hold. This section performs the proposed joint specification
tests. For simplicity, instead of testing the entire distribution of
covariates, we test the low order (raw) moments of covariates.

That is, we replace the outcome variable by each of the first
and second moments of the four covariates (i.e., bank age,
percentage of black population, percentage of farmland, and log
of manufacturing output per capita) and re-estimate Q-LATEs.
We use the same bandwidths and specification as those used
for our main estimation. Results of these falsification tests are
visualized in Figures 5 and 6. Table D3.1 in the appendix further
reports the bias-corrected estimates of WQ-LATEs on the first
two moments of the covariates. None of these estimates are
statistically significant.

In addition to our joint tests, we also perform the standard
RD validity checks, including the density test and covariates
smoothness test. Details of these tests and formal testing results
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Figure 8. Conditional means of covariates conditional on town population.

are provided in Appendix D.3. Figure 7 presents the histogram
of the town population (left) and the log frequency of the
town population within each bin of 200 population (right).
Superimposed on the right graph is the estimated log density
along with the 95% confidence interval. Figure 8 plots the mean
of the covariate in a bin of town population against the mid-
point of the bin. The bars mark the 95% confidence intervals.
Overall we do not find evidence that banks took advantage
of the lower capital requirement and hence were more likely
to operate in towns with populations just under 3000. Results
of our validity checks strongly support the plausibility of our
assumptions.

7. Conclusion

An empirically important class of fuzzy RD designs involve
continuous treatments. This article provides nonparametric
identification and robust bias-corrected inference for such RD
designs. We utilize for identification any distributional changes
in the continuous treatment at the RD threshold, including the
usual mean change as a special case. Our model can poten-
tially apply to a large class of policies that target parts or
features of the treatment distribution, such as changing the
mean, changing the variance or shifting one or both tails of
the distribution. Treatment changes in general are responses
to relevant policies. By focusing on where the true changes
are in the treatment distribution, we provide what are likely
to be the most policy relevant treatment effects. Our empir-
ical application demonstrates the usefulness of the proposed
approach.

Supplementary Materials

The supplemental appendix provides proofs of the theoretical results pre-
sented in the article, preliminary lemmas, alternative inference based on
undersmoothing, and details of estimating the biases and variances of the
proposed estimators as well as the AMSE optimal bandwidths. It also pro-
vides data description and additional results for the empirical application.
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