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Summary

In many applications of regression discontinuity designs, the running variable
used to assign treatment is only observed with error. We show that, provided
the observed running variable (i) correctly classifies treatment assignment and
(ii) affects the conditional means of potential outcomes smoothly, ignoring the
measurement error nonetheless yields an estimate with a causal interpretation:
the average treatment effect for units whose observed running variable equals
the cutoff. Possibly after doughnut trimming, these assumptions accommodate
a variety of settings where support of the measurement error is not too wide. An
empirical application illustrates the results for both sharp and fuzzy designs.
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1 INTRODUCTION

The key characteristic of regression discontinuity (RD) designs is that assignment of units to treatment is determined
by whether the value of a particular covariate X∗, called the running variable, exceeds a fixed threshold c. Under weak
continuity conditions, comparing units on either side of the threshold identifies the average treatment effect (ATE) for
units with X∗ = c. However, in many cases, researchers only observe a noisy version X of the true running variable X∗.
In our survey of papers published in leading economics journals that featured RD designs, 23% of them used a running
variable measured with error.1 Most commonly, the noise arose due to rounding or grouping, such as when researchers
observe age in years, income reported in income brackets, or job tenure in months, while the administrator assigning
treatment uses the exact birthdate, income, or job tenure.

The prevalence of this problem has given rise to a growing literature on measurement error in RD designs (see, among
others, Barreca et al., 2016; Bartalotti et al., 2021; Davezies & Le Barbanchon, 2017; Dieterle et al., 2020; Dong, 2015;
Hullegie & Klein, 2010; Pei & Shen, 2017). As this literature points out, ignoring the measurement error can lead to
inconsistent estimates of the usual RD estimand, the ATE for units with X∗ = c.2 This motivated the development of
a variety of alternative estimation and inference procedures to recover this ATE; the solutions depend on the particular
auxiliary assumptions about the form of the measurement error or the availability of auxiliary datasets.

1See Appendix B in the Supporting Information for details.
2As we discuss in more detail in Section 2.3, an exception is Battistin et al. (2009), who, in the context of a fuzzy RD design, consider measurement
error with a point mass at zero and give conditions under which ignoring the measurement error nonetheless yields a consistent estimate of a fuzzy RD
analog of this estimand.
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This paper makes the simple point that under easily interpretable conditions, existing RD techniques provide inference
for a slightly different estimand, the ATE for units with X = c. That is, one could interpret the RD analysis as if X were
the true running variable. For instance, suppose X∗ is birthdate, but we only observe the year of birth X . While standard
RD analysis does not yield valid inference for the RD estimand associated with X∗, the ATE for individuals born on the
cutoff date, it does provide valid inference for the ATE for individuals born in the cutoff year.3

This result relies on two key conditions: (i) using X as a running variable correctly classifies the treatment assignment,
and (ii) the conditional means of the potential outcomes are smooth in X . The first condition holds automatically for
certain types of rounding error; more generally, it requires removing observations at or in the immediate vicinity of the
threshold, resulting in a “doughnut design.” Our approach is thus most relevant when the support of the measurement
error is relatively narrow (which includes most settings with rounding or grouping error); otherwise, the doughnut
trimming may end up removing too many observations and preclude informative inference.

For the second condition, we give a formal result showing it holds under weaker conditions than those needed for
inference on the ATE conditional on X∗ = c, if we were to observe X∗: Intuitively, the measurement error smooths
out kinks or other irregularities in the conditional mean of the outcome given X∗. Inference can be conducted using
bias-aware inference methods (e.g., Armstrong & Kolesár, 2018, 2020; Noack & Rothe, 2021), which automatically adapt
to the potentially irregular support of X . In particular, we can ignore the measurement error in the sense that estimation
and inference on the trimmed data can proceed as if X were the running variable used by the administrator to assign
treatment.

An appealing feature of focusing on the ATE for units with X = c is that valid inference relies only on assumptions
about the smoothness of the conditional mean of the potential outcomes given X . Such assumptions are easy to interpret
and are (partially) testable. Furthermore, inference is standard in that we can directly apply existing methods. In contrast,
for inference on the ATE for units with X∗ = c, one needs to either make specific assumptions about latent objects, such
as the distribution of the measurement error given X or X∗, or have access to auxiliary data; furthermore, the form of the
estimator depends on the exact form of these specific assumptions.

The rest of the paper proceeds as follows. Section 2 gives the setup and the main results and discusses their applicability
under different types of measurement error. Section 3 illustrates the results in an empirical application. Section 4 con-
cludes. Auxiliary results appear in Appendix A. Appendix B in the Supporting Information contains a survey of empirical
RD papers featuring measurement error.

2 SETUP AND MAIN RESULTS

We are interested in the effect of a treatment T on an outcome Y . Let Y (t) denote the potential outcomes, t ∈ {0, 1}.
The observed outcome is given by Y = Y (0) + T(Y (1) − Y (0)). An administrator assigns individuals to treatment if their
running variable X∗ crosses a threshold c, which we normalize to c = 0. Let Z = I{X∗ ≥ 0} denote the indicator for
treatment assignment. In a sharp RD design, all individuals comply with the treatment assignment, so that T = Z. Let
g∗t (x) ∶= E[Y (t) |X∗ = x] denote the conditional mean of the potential outcomes given X∗, and let g∗(x) ∶= E[Y |X∗ =
x] = I{x ≥ 0}g∗1(x) + I{x < 0}g∗0(x) denote the conditional mean of the observed outcome.

If the conditional means g∗t are continuous at 0, the jump in g∗ at 0 identifies an ATE for units at the threshold
(Hahn et al., 2001):

𝜏∗ ∶= E[Y (1) − Y (0) |X∗ = 0] = lim
x↓0

g∗(x) − lim
x↑0

g∗(x). (1)

If X∗ were observed, and we strengthen the continuity assumption by placing nonparametric smoothness assump-
tions on g∗, several methods for estimation and inference on 𝜏∗ are available (see, e.g., Armstrong & Kolesár, 2018, 2020;
Calonico et al., 2014; Imbens & Kalyanaraman, 2012; Imbens & Wager, 2019). Under parametric restrictions on g∗, we
can leverage standard parametric regression methods for estimation and inference.

3Equivalently, this estimand is a weighted average of ATEs conditional on X∗, with weights given by the density of the measurement error conditional
on X = c. In the example, it corresponds to a weighted average of ATEs for individuals born on each day of the cutoff year, weighted by the relative
birthdate frequencies.
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We do not observe X∗ directly, however; instead, we observe X = X∗ − e, where e is measurement error.4 As our
leading example, we focus on the case where e represents rounding or grouping error. By rounding, we mean that the
observed running variable can be written as X = r(X∗), where the rounding function r is a monotone step function that
is idempotent (rounding a number twice is the same as rounding it once, r(r(X∗)) = r(X∗)), and the steps are equal sized.
For instance, if we observe a rounded-down version of X∗, then the rounding function corresponds to the floor function,
r(X∗) = ⌊X∗⌋, and e = X∗ − ⌊X∗⌋. Rounding is a special case of grouping. Grouping allows r(·) to be any idempotent step
function, not necessarily with equal-sized steps; it arises when the sample space for X∗ is partitioned into subsets, and
X = r(X∗) is a numeric value representing the subset (Heitjan & Rubin, 1991). For instance, under interval reporting, X
may correspond to the midpoint or one of the endpoints of the interval that X∗ belongs to. In spatial RD, it is common to
observe the centroid of the unit's ZIP code or county instead of its exact location.

Our framework, outlined in Section 2.1 for sharp RD, and extended to fuzzy RD settings in Section 2.3, only imposes
high-level conditions on e that allow the measurement error to take many other forms besides grouping; X may be discrete,
continuous, or mixed. Section 2.2 discusses sufficient low-level conditions in particular settings. In addition to group-
ing, we consider classical measurement error (e is independent of Y (1),Y (0), and X∗), Berkson measurement error (e is
independent of Y (1),Y (0), and X), and heaping. While under grouping, the grouping function r(X) is the same for each
unit (so that the conditional distribution of X given X∗ is degenerate), under heaping, one may round the data according
to one of several rounding functions ru(·), u = 1, 2, … ,K, with different ranges; we observe X = rU(X∗), where U is a
random variable, possibly correlated with potential outcomes or X∗, determining which rounding function is used (Heit-
jan & Rubin, 1991). For instance, some parents may report ages of their children rounded to the nearest year or nearest
half-year, while others may not round at all and report the exact date of birth (e.g., Heitjan & Rubin, 1990). The degree of
rounding may depend on characteristics of the parents or the age of the child (ages of very young children and children
of parents with more education are usually more likely to be precisely reported). The density of the running variable then
displays “heaps” at ages that are multiples of 0.5.

2.1 Estimation and inference with measurement error

Our approach is based on the observation that any variable X can serve as a running variable, provided that it correctly
classifies the treatment assignment, and provided that the conditional mean functions of the potential outcomes given X
are continuous at the cutoff:

(C1) I{X ≥ 0} = Z almost surely.
(C2) gt(x) ∶= E[Y (t) |X = x] is continuous at 0 for t = 0, 1.

We give a detailed discussion of these conditions in our setting, where X is a mismeasured version of X∗, in
Section 2.2 below. Condition (C2) corresponds to the standard RD continuity condition from Hahn et al. (2001),
except it is applied to X rather than X∗.
To interpret the estimand we consider, let g∗t (X

∗, e) ∶= E[Y (t) |X∗, e] denote the conditional mean of the poten-
tial outcome Y (t), t = 0, 1, given both the true value of the running variable and the measurement error, and let
𝜏∗(X∗, e) = g∗1(X

∗, e) − g∗0(X
∗, e) = E[Y (1) − Y (0) |X∗, e] denote the conditional ATE, conditional on both X∗ and

e. We denote the conditional ATE, conditional on X∗ only, by 𝜏∗(x) = g∗1(x) − g∗0(x) = E[Y (1) − Y (0) |X∗ = x],
so that 𝜏∗ = 𝜏∗(0). While, as we discuss further below, our approach does allow the measurement error to affect
potential outcomes, to clearly link the estimand we consider to the usual RD estimand, it is useful to rule this
possibility out and assume that the measurement error does not affect the conditional ATE, at least when X = 0
(note E[Y (1) − Y (0) |X∗ = x,X = 0] = 𝜏∗(x, x)):

(C3) 𝜏∗(x, x) = 𝜏∗(x).
This condition is slightly weaker than the requirement that the measurement error be nondifferential, that is, inde-
pendent of (Y (1),Y (0)) given X∗ (Chapter 2.6 Carroll et al., 2006); for instance, rounding, grouping, and classical
measurement errors are all nondifferential.

4Our setting is distinct from that in Eckles et al. (2022), where the running variable X observed by the researcher is also the variable used by the
administrator, and it can be thought of as a noisy measure of some latent variable X∗ that affects potential outcomes.
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Lemma 2.1. Suppose that T = Z and conditions (C1) and (C2) hold. Then, the jump in the conditional mean function
g(x) ∶= E[Y |X = x] at 0 identifies the ATE for units with X = 0,

𝜏 ∶= E[Y (1) − Y (0) |X = 0] = lim
x↓0

g(x) − lim
x↑0

g(x). (2)

If, in addition, condition (C3) holds, then 𝜏 = ∫ 𝜏∗(e)dFe |X (e |0), where Fe |X (e |x) is the conditional distribution of
e = X∗ − X given X = x.

Proof. Under condition (C1), g(x) = I{X ≥ 0}g1(x) + I{X < 0}g0(x), so that limx↓0g(x) − limx↑0g(x) =
limx↓0g1(x) − limx↑0g0(x), which equals g1(0) − g0(0) by condition (C2). By iterated expectations, 𝜏 =
E [E [Y (1) − Y (0) |X∗,X = 0] |X = 0], which gives the second claim.

By Lemma 2.1, we can effectively “ignore” the measurement error in the observed running variable X , in that we can
conduct the analysis as if X were the running variable used by the administrator to assign treatment, provided that we
align the target of inference accordingly, setting it to 𝜏. Under condition (C3), we can interpret 𝜏 as a weighted average of
ATEs conditional on X∗ = x, 𝜏∗(x); in contrast, 𝜏∗ simply corresponds to the conditional ATE at 0, 𝜏∗(0). If condition (C3)
does not hold, then both estimands may be expressed as weighted averages of conditional ATEs, conditional on both X∗

and e, but the weighting functions are different, which makes them a little harder to compare. Specifically, by iterated
expectations, 𝜏 = ∫ 𝜏∗(e, e)dFe |X (e |0), while 𝜏∗ = ∫ 𝜏∗(0, e)dFe |X∗ (e |0), where Fe |X∗ is the conditional distribution of
e given X∗.

Remark 1. (Comparison of 𝜏 and 𝜏∗) The parameter 𝜏∗ corresponds to an ATE for units with the latent running
variable X∗ equal to 0. If X∗ is the birthdate of an individual, for instance, then 𝜏∗ is the ATE for those born on the
cutoff date. If X is month of birth, then 𝜏 corresponds to the ATE for those born in the same month as the individuals
born on the cutoff date. Because the measurement error is nondifferential, 𝜏 can be expressed as a weighted average
of 𝜏∗(x), the ATE for individuals born on day x, and the same month the individuals born on the cutoff date. The exact
weights depend on the distribution of births in that month. If, for instance, birthdate is uniformly distributed within
the month, then the weights are uniform. The estimands 𝜏 and 𝜏∗ are generally different unless 𝜏∗(x) is constant on
the support of e. For example, if 𝜏∗(x) = a + bx, and E[e |X = 0] = 1∕2 (say when e is uniform), which appears to be
consistent with the results of our empirical application, then 𝜏∗ = a, while 𝜏 = a + b∕2. Which parameter is more
policy relevant depends on the particular policy counterfactual one has in mind.5

For estimation and inference, we need to strengthen condition (C2) by assuming that g satisfies appropriate parametric
or nonparametric smoothness conditions. As a simple parametric approach, one may assume that g(x) takes the form of a
polynomial of degree q on either side of the threshold for values of x within distance h of the threshold. Then, one could
estimate 𝜏 by a local polynomial regression of Y onto mq(X) = (I{X ≥ 0}, I{X ≥ 0}X , … , I{X ≥ 0}Xq, 1, … ,Xq) (a
polynomial in X interacted with treatment assignment), using ordinary least squares (OLS).6 Specifically, given a sample
{Yi,Xi}n

i=1, the estimator is defined as

𝜏Y
h,q = (1, 0, … , 0)′

( n∑
i=1

I{|Xi | ≤ h}mq(Xi)mq(Xi)′
)−1 n∑

i=1
I{|Xi | ≤ h}mq(Xi)Yi. (3)

Under i.i.d. sampling, inference can be conducted using Eicker–Huber–White (EHW) standard errors, provided that X
has at least q + 1 support points on either side of the threshold.

A limitation of the parametric approach is that if g(x) is not exactly polynomial inside the estimation window, the
estimator will be biased; consequently, confidence intervals (CIs) based on EHW standard errors will undercover 𝜏. To
address this issue, as the preferred inference method, we propose to use the bias-aware (or “honest”) inference approach

5One may object that the parameter 𝜏 is reverse-engineered in that Lemma 2.1 shows 𝜏 is the parameter that our analysis happens to identify. The same
criticism may be leveled at the result of Hahn et al. (2001) that RD analysis in the absence of measurement error identifies 𝜏∗. We view both results as
useful in separating the internal and external validity of the analysis.
6While this covers a global approach by setting h = ∞, as discussed in Gelman and Imbens (2019), such an approach may perform poorly relative to
local approaches.
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developed in Armstrong and Kolesár (2018, 2020) and Kolesár and Rothe (2018). This approach enlarges the CIs by taking
into account the potential finite-sample bias of the estimator. In particular, letting �̂�

(
𝜏Y

h,q

)
denote the standard error, a

CI with level 1 − 𝛼 takes the form
𝜏Y

h,q ± cv𝛼
(

B
(
𝜏Y

h,q

)
∕�̂�

(
𝜏Y

h,q

))
· �̂�

(
𝜏Y

h,q

)
. (4)

Here, cv𝛼(t) is the 1 − 𝛼 quantile of a folded normal distribution |N(t, 1) | , and B
(
𝜏Y

h,q

)
is a bound on the finite-sample

conditional (on X) bias of the estimator. As a baseline assumption to bound the potential bias, we replace the parametric
assumption that g is polynomial with the weaker nonparametric assumption that g ∈ RD(M), where

RD(M) =
{
𝑓1(x)I{x ≥ 0} + 𝑓0(x)I{x < 0} ∶ ‖‖𝑓 ′

0
‖‖C1 ≤ M, ‖‖𝑓 ′

1
‖‖C1 ≤ M

}
. (5)

Here, ‖𝑓‖C1 = supx≠x′ |𝑓 (x)−𝑓 (x′) |∕ |x−x′ | is the Lipschitz constant of 𝑓 (if 𝑓 is differentiable, then the constant is the
maximum of its derivative, ‖𝑓‖C1 = supx |𝑓 ′(x) | ). The parameter space for g thus corresponds to (the closure of) a family
of functions that are twice differentiable on either side of the cutoff, with the second derivative bounded in absolute value
by M, but are potentially discontinuous at 0. Under this assumption, it is optimal to run a local linear regression, that is, use
the estimator 𝜏Y

h,1. The (conditional on X) bias of the estimator is maximized at the function h(x) = Mx2(I{x < 0} − I{x ≥
0})∕2, so that B(𝜏Y

h,1) is given by Equation (3), with Yi replaced by h(Xi). See Armstrong and Kolesár (2020) and Kolesár and
Rothe (2018) for details. An appealing feature of the bias-aware CI is that because it accounts for the exact finite-sample
bias of the estimator, it is valid under any bandwidth sequence, including using a fixed bandwidth; for example,
the bandwidth h may be selected to minimize the (worst case over RD(M)) mean squared error or the length of the
resulting CI.7

2.2 Conditions for validity of proposed approach

Unlike existing approaches that seek to do inference on 𝜏∗ even in presence of measurement error (e.g., Davezies &
Le Barbanchon, 2017; Dong, 2015; Hullegie & Klein, 2010; Pei & Shen, 2017), we do not impose specific assumptions
on the measurement error distribution or require auxiliary data. Instead, our approach is based on the observation that
we can use existing parametric or nonparametric methods for inference on 𝜏 provided that condition (C1) holds, and we
strengthen condition (C2) by assuming that the conditional mean functions g is smooth (in the sense that it is exactly
polynomial inside the estimation window, or else g ∈ RD(M)). These assumptions are high-level in that they are exactly
the conditions needed to interpret the RD design with the observed running variable as a valid RD design. In the following
remarks, we discuss in detail sufficient conditions for these assumptions in specific measurement errors settings. We also
discuss related practical issues.

Remark 2. (Correct classification of treatment assignment) In a few special cases, such as when X corresponds to X∗

rounded down to the nearest integer, and the threshold c is an integer, condition (C1) holds automatically.8 In general,
however, measurement error in X may induce misclassification of the treatment assignment for values of X equal to
the cutoff or in its immediate vicinity. In such cases, condition (C1) requires dropping observations with such values
of X , resulting in a “doughnut” design (e.g., Almond et al., 2011; Barreca et al., 2011).

The exact form of such doughnut trimming depends on the support of the measurement error. Under grouping error,
we need to remove observations corresponding to the subset containing 0. For instance, under ordinary rounding, or
rounding up to the nearest integer, we need to remove observations with X = 0. Under interval measurement, we
need to remove X that falls into the interval containing 0. Under Berkson, classical, or other types of measurement
error with bounded support [s0, s1], with s0 ≤ 0 ≤ s1, we need to remove observations with X ∈ [−s1,−s0).

7We implement this method in the empirical application in Section 3, where we also discuss the choice of M, the key tuning parameter. See Kolesár and
Rothe (2018), Imbens and Wager (2019), and Armstrong and Kolesár (2020) for a more detailed discussion, including a discussion of implementation
issues.
8Another example when condition (C1) holds in the full sample is when only values of X outside the immediate vicinity of the cutoff are error ridden.
Specifically, let X∗ − U be an initial noisy measurement, where U is pure measurement error with bounded support. We observe a follow-up exact
measurement, X = X∗ with probability p(X∗ − U), and observe the noisy measurement otherwise. The probability p(·) varies smoothly and equals 1
near the cutoff, when it is necessary to wait for the follow-up measurement to determine treatment assignment.
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A limitation of our approach is that it does not handle settings in which the support e is unknown or unbounded.
Furthermore, if the support of e is wide, the doughnut trimming may result in removing many observations and
preclude informative inference. One way to proceed in such cases is focus on inference about 𝜏∗ under parametric
assumptions about the measurement error distribution and the form of g∗, as in Hullegie and Klein (2010).9 If the
researcher observes the treatment assignment Z, in addition to Y and X , we can easily infer which units are misclas-
sified. Pei and Shen (2017) discuss how to use this information to recover 𝜏∗ without parametric restrictions on g∗ or
on the measurement error distribution.10

Remark 3 (Smoothness of g). Our proposed approach requires smoothness of g in the sense that g ∈ RD(M). To
discuss this condition, suppose that condition (C1) holds, so that we may write g(x) = I{x ≥ 0}g1(x) + I{x < 0}g0(x),
where, by iterated expectations,

gt(x) = E[Y (t) |X = x] = E[g∗t (X
∗, e) |X = x]. (6)

In Lemma A.1 in Section A.1, we give a formal result showing that if (a) the conditional distribution of the mea-
surement error Fe |X (e |x) is smooth in x and (b) the effect of the measurement error on potential outcomes is smooth,
so that g∗t (X

∗, e) is smooth in the second argument, then the condition g ∈ RD(M) is weaker than the analogous
smoothness requirement needed for inference on 𝜏∗ if X∗ were observed: The smoothness of gt in X is greater than
the smoothness of gt(X∗, e) in X∗. Consequently, Equation (5) will hold for g even in settings where it may not hold
for g∗(x) = I{x ≥ 0}g∗1(x) + I{x < 0}g∗0(x). Condition (b) holds trivially for Berkson measurement error, since then
Fe |X (e |x) does not depend on x at all; it also holds for classical measurement error if the density of X∗ is smooth.11

To gain intuition for this result, suppose first that the measurement error is nondifferential, so that g∗t (X
∗, e) =

g∗t (X
∗), and condition (b) above holds trivially. Then, we may write Equation (6) as gt(x) = E[g∗t (X

∗) |X = x]. Lemma
A.1 then formalizes the notion that the conditional expectation E[· |X = x] “smooths out” nonlinearities in g∗t .12

For example, if g∗t contains kinks (so that it has Smoothness Index 1 and Equation 5 fails for g∗), these kinks will
be smoothed out by the measurement error provided that the conditional density of e given X is continuous with
a bounded slope (in which case, gt will have Smoothness Index 2, and Equation 5 will hold for g). This smoothing
effect is greatest under grouping error or more generally whenever X is discrete: Under the interpretation in Remark
4 below, Equation (5) always holds for appropriately chosen M (so Lemma A.1 is not needed), because we can always
smoothly interpolate gt(x) through the support points of X , using, say, spline interpolation (e.g., Späth, 1995).

The result in Lemma A.1 also goes through under differential measurement error, provided the error affects the
potential outcomes smoothly—this is analogous to the result that g∗t (X

∗) remains to be smooth in X∗ even if agents
can manipulate their running variable, so long as the manipulation is not perfect (Lee, 2008).

For the parametric approach, if condition (C1) holds, a sufficient condition for g to be polynomial of degree q on
either side of the threshold is that g∗0(X

∗, e) and g∗1(X
∗, e) are multivariate polynomials of degree q, and E[e𝑗 |X] for

𝑗 = 1, … , q are polynomials of degree 𝑗. This follows directly from the binomial theorem.

While conditions (a) and (b) in Remark 3 are relatively mild, they necessitate subpopulation analysis under heaping.
For example, consider using birthweight as a running variable to identify the effects of hospital care on infant health as
in Almond et al. (2010). Suppose that some (but not all) hospitals report rounded rather than precise birthweight—then,

9Inference on 𝜏∗ without parametric restrictions on g∗ is challenging, because 𝜏∗ is generally unidentified unless the measurement error distribution
is completely known. Furthermore, even if the distribution is known, the rates of convergence can be very slow. For example, if e is classical Gaussian
measurement error, the lower bounds in Fan and Truong (1993) suggest that the rate is logarithmic in the sample size.
10In the context of fuzzy RD, Davezies and Le Barbanchon (2017) develop a nonparametric approach to estimation of 𝜏∗ that is likewise flexible about
the form and support of the measurement error distribution, but they require the econometrician to observe both X and X∗ in the subsample of treated
individuals.
11Specifically, by Bayes' rule, the conditional density of e given X = x may be written as 𝑓 (e; x) = 𝑓X∗ (x + e)𝑓e(e)∕ ∫ 𝑓X∗ (x + e)𝑓e(e)de, where 𝑓X∗

and 𝑓e denote the density of X∗ and e, respectively. This expression is smooth in x so long as the density of X∗ is smooth and the marginal density of
X , ∫ 𝑓X∗ (x + e)𝑓e(e)de, is bounded away from zero.
12See, for example, Newey (2013, Section 4) for a discussion in the context of nonparametric instrumental variables regression, where X∗ plays the role
of an endogenous variable and X plays the role of an instrument. One consequence of this smoothing in the current context is that the measurement
error may smooth out the discontinuity of g∗ at the cutoff, making g continuous, and causing condition (C1) to fail unless we restrict the sample as
discussed in Remark 2.
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condition (a) fails because the distribution Fe |X (e |x) changes discontinuously as at round values of x. Furthermore,
suppose that hospitals with fewer resources are more likely report rounded rather than precise birthweight, as argued
in Barreca et al. (2016). Then, condition (b) also fails, because g∗t (X

∗, e) is then potentially discontinuous at e = 0 due
to different hospital composition under rounded versus exact reporting. Suppose, however, that the conditional mean
functions gt are smooth in the subpopulation of hospitals that do not round birthweight. Conditions (a) and (b) then hold
if we drop the heaping points, only keeping observations with nonround values of X , as suggested by Barreca et al. (2016).
The estimand 𝜏 corresponds to a conditional ATE for units with X = X∗ = 0 born in a hospital that reports exact
birthweight.

In some instances of heaping, all values of X are rounded, but the rounding precision differs across units. Say some
individuals round age to the nearest month, while others round to the nearest year or half-year. To ensure conditions (a)
and (b) hold in such cases, we drop individuals with age in months that is a multiple of 6. The remaining sample then only
contains those who report age in months. We can interpret the estimand as the ATE for those born in the cutoff month
in the subpopulation of individuals who report the running variable with the greatest precision.

Because the conditional mean function g(x) is identified over the support of X , smoothness assumptions such as g ∈
RD(M) are testable. Problems such as heaping are often apparent from simple plots of undersmoothed binned averages
of the outcome against X (see, e.g., fig. 1 in Barreca et al., 2011), and one can also conduct more formal specification tests
(see, e.g., Kolesár & Rothe, 2018, Appendix S.3).

Remark 4 (Irregular support of X). The measurement error may result in a coarsening of the support of the observed
running variable X relative to X∗. Under grouping, for example, X becomes discrete even if X∗ is continuously
distributed. Furthermore, there may be a gap in the support around 0 due to doughnut trimming (see Remark 2). In
such “irregular” cases, because conditional mean functions are only well-defined over the support of the conditioning
variable, following Kolesár and Rothe (2018) and Imbens and Wager (2019), we interpret smoothness assumptions
such as Equation (5) to mean that there exists a function g(x) ∈ RD(M) with domain R such that E[Y |X] = g(X)
with probability one. With discrete X or under a doughnut design, there will be multiple functions g satisfying this
condition, and the parameter 𝜏 will only be partially identified.

An advantage of bias-aware inference is that the estimator and CI construction remains the same whether the
support of X is continuous, discrete, or otherwise irregular, and whether 𝜏 is point or partially identified. Under
irregular support of X , the finite-sample bias of the estimator may be large, but the CI will automatically reflect it via
a larger critical value (in such cases, the interval will converge to the identified set as the sample size n → ∞). We
illustrate these points in the empirical application in Section 3, where we show that under rounding error, CIs for 𝜏
tend to be longer than CIs for 𝜏∗ that one would obtain using the same construction if X∗ were observed.13

2.3 Fuzzy designs

In fuzzy RD designs, only a subset of the individuals complies with the treatment assignment, so that T ≠ Z. In this
case, Hahn et al. (2001) show that the fuzzy RD parameter can be interpreted as a local ATE for individuals who comply
with the treatment assignment. Let us reconsider their argument when we use a variable X as the running variable, not
necessarily equal to the running variable X∗ used by the administrator.14

Let T(1) denote the potential treatment status of the individual if they are assigned to treatment, and let T(0) denote
their status if they are not assigned to treatment. The observed treatment is given by T = T(Z), and the observed outcome
is given by Y = Y (T(Z)) = Y (0) + T(Z)(Y (1) − Y (0)). Let ℭ denote the event that an individual is a complier, that is,
T(1) > T(0). Finally, in analogy to the conditional means g and gt, let p(x) = E[T |X = x] and pz(x) = E[T(z) |X = x] for
z ∈ {0, 1}.

We replace the sharp RD condition that all individuals comply with the treatment assignment (T = Z) with the
weaker condition that a nonzero fraction of individuals complies with it and that nobody defies the treatment assignment
(in analogy with the monotonicity condition in Imbens & Angrist, 1994):

13In large samples, CIs for 𝜏 will be wider than the corresponding CIs for 𝜏∗ if X∗ were observed, because the former do not converge to a point, while the
latter do. In finite samples, the variability of the estimators, which in general cannot be ranked, also matters, and the CI for 𝜏∗ may end up being wider.
14The original argument in Hahn et al. (2001) involved defining potential treatments under counterfactual values of the running variable. However,
the running variable may not be manipulable (e.g., when X∗ corresponds to a birthdate). We therefore use a slightly different argument, based on
manipulation of the treatment assignment. The treatment assignment is typically manipulable, say by moving the cutoff.
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(F1) P(T(1) ≥ T(0) |X = 0) = 1, and P(T(1) > T(0) |X = 0) > 0.
Next, we replace the continuity assumption (C2) with a continuity assumption on the first stage and reduced form
regression functions15:

(F2) pz(x) and E [Y (T(z)) |X = x] , z = 0, 1, are continuous at 0.
Intuitively, if treatment eligibility Z did not change at the cutoff but was instead fixed, this condition implies that
the observed outcome Y = Y (T(Z)) would be continuous at 0. As a result, any discontinuity must be due to change
in treatment eligibility, which allows for identification of causal effects. Conditions (F1) and (F2) are analogous to
the standard fuzzy RD assumptions but applied to X rather than X∗.
Finally, to link the estimand, we consider to the usual RD estimand, analogous to condition (C3), it is useful to
assume that the measurement error has no effect on the compliance probability or the ATE for compliers once we
control for X∗.

(F3) P (ℭ |X∗ = x,X = 0) = P (ℭ |X∗ = x) and E
[
Y (1) − Y (0) |ℭ,X∗ = x,X = 0

]
= E

[
Y (1) − Y (0) |ℭ,X∗ = x

]
.

This is a slightly weaker requirement that the measurement error e be nondifferential, that is, independent of
(Y (1),Y (0),T(1),T(0)) given X∗. In analogy to condition (C3) in the sharp case, condition (F3) is helpful for interpreting
the estimand, but it is not necessary for validity of our approach.

With this setup, we obtain a fuzzy RD analog of Lemma 2.1.

Lemma 2.2. Suppose that conditions (C1), (F1), and (F2) hold. Then,

𝜏F ∶= E
[
Y (1) − Y (0) |ℭ,X = 0

]
=

limx↓0g(x) − limx↑0g(x)
limx↓0p(x) − limx↑0p(x)

.

If, in addition, condition (F3) holds, then 𝜏F = ∫ 𝜏∗F(e)𝜔(e)dFe |X (e |0), where 𝜏∗F(x) ∶= E[Y (1) − Y (0) |ℭ,X∗ = x], and
𝜔(e) = P(ℭ |X∗=e)

∫ P(ℭ |X∗=e)dFe | X (e | 0)
.

Proof. Observe that

lim
x↓0

g(x) − lim
x↑0

g(x) = lim
x↓0

E[Y (T(1)) |X = x] − lim
x↑0

E[Y (T(0)) |X = x]

= E[Y (T(1)) − Y (T(0)) |X = 0]

= E[(Y (1) − Y (0))(T(1) − T(0)) |X = 0]

= E[Y (1) − Y (0) |X = 0,ℭ]P(ℭ |X = 0),

where the first equality uses the fact that Y = Y (T(Z)) and that by condition (C1), T = T(1) for individuals with
X ≥ 0, and T = T(0) for those with X < 0, the second equality uses condition (F2), the third uses Y (T(z)) =
Y (0)+T(z)(Y (1)−Y (0)), and the last equality uses iterated expectations and condition (F1). By analogous arguments,
limx↓0p(x) − limx↑0p(x) = P(ℭ |X = 0). The second claim follows by applying iterated expectations to the numerator
and denominator of 𝜏F = E[(Y (1)−Y (0))ℭ |X=0]

E[ℭ |X=0]
and using condition (F3).

Under perfect compliance, T = Z, Lemma 2.2 reduces to Lemma 2.1. In analogy to the sharp case, any variable satisfying
conditions (C1), (F1), and (F2) can be used as a running variable. With X = X∗, we obtain the standard result that

𝜏∗F ∶= 𝜏∗F(0) =
lim
x↓0

g∗(x) − lim
x↑0

g∗(x)

lim
x↓0

p∗(x) − lim
x↑0

p∗(x)
,

where p∗(x) = E[T |X∗ = x].

15Analogous to an instrumental variables regression that uses Z as an instrument, these are (nonparametric) regressions of T and Y , respectively, onto
Z and X .
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Unless the local ATEs 𝜏∗F(x) are constant on the support of e, 𝜏F ≠ 𝜏∗F . Because 𝜏∗F(x) is given by the ratio of the reduced
form effect E[Y (T(1)) − Y (T(0)) |X∗ = x] to the first stage effect E[T(1) − T(0) |X∗ = x], whether 𝜏∗F(x) is locally constant
depends on heterogeneity in both the reduced form and the first stage conditional mean functions. Our empirical results
in Section 3, for example, are consistent with the reduced form effect being approximately constant, while the first stage
effect is approximately linear, that is, E[Y (T(1)) − Y (T(0)) |X∗ = x] ≈ a and E[T(1) − T(0) |X∗ = x] ≈ b + cx; further, the
measurement error is approximately uniform on [0, 1]. So 𝜏F ≈ a∕(b + c∕2), while 𝜏∗F ≈ a∕b.

If the measurement error is differential, and condition (F3) does not hold, then both 𝜏∗F and 𝜏F may be expressed as
weighted averages of conditional ATEs for compliers, conditional on both X∗ and e, 𝜏∗F(X

∗, e) ∶= E[Y (1) − Y (0) |ℭ,X∗, e].
Specifically, by iterated expectations, 𝜏F = ∫ 𝜏∗F (e,e)pℭ(e,e)dFe | X (e | 0)

∫ pℭ(e,e)dFe | X (e | 0)
, while 𝜏∗F = ∫ 𝜏∗F (0,e)pℭ(0,e)dFe | X∗ (e | 0)

∫ pℭ(0,e)dFe | X∗ (e | 0)
, where pℭ(X∗, e) ∶=

P(ℭ |X∗, e). Lemma 2.2 is related to the result in Battistin et al. (2009) who show that if we replace condition (C1) with
the assumption that the measurement error is nondifferential and has a point mass at zero but is otherwise smooth,
𝜏F = 𝜏∗F . If the measurement error is differential, but affects the potential outcomes and potential treatments smoothly,
the arguments in Battistin et al. (2009) imply that 𝜏F = 𝜏∗F(0, 0); this was shown in Card et al. (2015) in the context of fuzzy
regression kink designs.

Similarly to the sharp case, if we assume that the conditional mean functions g(x) and p(x) are polynomial inside a
window h of the threshold, then we can estimate 𝜏F as a ratio of local polynomial estimators

𝜏h,q = 𝜏Y
h,q∕𝜏

T
h,q, (7)

with 𝜏Y
h,q defined in Equation (3) and 𝜏T

h,q defined analogously.16 If there are at least q+1 support points for X on either side
of the threshold and inside the estimation window, then under i.i.d. sampling, standard errors for 𝜏h,q can be constructed
based on the EHW covariance matrix for (𝜏Y

h,q, 𝜏
T
h,q) using the delta method.

Our preferred approach weakens the polynomial assumptions on g(x) and p(x) by instead assuming that g ∈ RD(M𝑦)
and p ∈ RD(Mt). While this assumption only delivers set identification if the support of X is irregular (see Remark 4), we
can use the bias-aware inference approach for constructing CIs that are asymptotically valid whether 𝜏F is point identified,
set identified, or unidentified.17 In particular, following Noack and Rothe (2021), we can test the hypothesis H0 ∶ 𝜏F = 𝜏F,0

by checking whether 0 is in the bias-aware CI based on 𝜏
Y−𝜏F,0T
h,1 , and noting that the smoothness assumptions on g and

p imply E[Y − 𝜏F,0T |X = x] ∈ RD(M𝑦 + |𝜏F,0 |Mt). The confidence set for 𝜏F is constructed by collecting all values
of 𝜏F,0 that are not rejected, similar to the construction of Anderson and Rubin (1949) confidence set in standard linear
instrumental variables model.18

3 EMPIRICAL APPLICATION

In this section, we use data from Holbein and Hillygus (2016) to estimate the impact of preregistration on youth turnout
in an election. Holbein and Hillygus (2016) leverage the fact that in Florida, individuals who were ineligible to vote in the
2008 election (those born after November 4, 1990) were nonetheless eligible to preregister to be added to the voter rolls
for the next election. Those born before November 4, 1990, were already eligible to register regularly and vote in 2008.
This motivates a fuzzy RD design, where the treatment T is an indicator for preregistering, the outcome Y is an indicator
for voting in the 2012 election, and the running variable X∗ is the proximity to the eligibility cutoff in days.

To illustrate the effects of measurement error in the running variable, we compare this design to a fuzzy RD design in
which we (pretend to) only observe individuals' month of birth, and hence use proximity to November 1990 in months, X ,
as a running variable. We discard individuals born in November 1990, because their eligibility cannot be determined by
month of birth alone (see Remark 2). We show that, consistent with the discussion in Remarks 1 and 4, (i) using proximity
in days versus months yields different estimates, reflecting the impact of the rounding error on the estimand, and (ii)
using month of birth generally leads to wider CIs.

16Equivalently, as noted in Hahn et al. (2001), the estimator can be computed as a two-stage least squares estimator in a regression of Y onto T using
I{X ≥ 0} and instrument, and the remaining elements of mq(X) as exogenous covariates, using observations inside the estimation window.
17The parameter 𝜏F is unidentified if the instrument I{X ≥ 0} is irrelevant in the sense that P(T(1) > T(0) |X = 0) = 0. Because the expression for 𝜏F in
Lemma 2.2 not well-defined in this case, one can define 𝜏F in an arbitrary way.
18We implement this method in our empirical application in Section 3, where we also discuss the choice of the smoothness constants Mt and M𝑦. See
Noack and Rothe (2021) for a detailed discussion of implementation issues.
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FIGURE 1 Effect of proximity on
preregistering. Note: In panel (a), proximity is
measured in days, and each point corresponds
to an average of 1000 individuals. In panel (b),
proximity is measured in months, and each
point corresponds to an average across all
individuals born in a given month.

FIGURE 2 Effect of proximity on voting.
Note: In panel (a), proximity is measured in
days, and each point corresponds to an average
of 1000 individuals. In panel (b), proximity is
measured in months, and each point
corresponds to an average across all individuals
born in a given month.

We first visualize both versions of the RD design. In each case, the sample size is 186,575, consisting of individuals born
within 6 months of the eligibility cutoff. Figure 1 presents the first stage, plotting preregistration rate against proximity
in days (panel (a)) or in months (panel (b)). For ineligible individuals, the preregistration rate is essentially 0, while for
eligible individuals, the preregistration rate is downward slopping: those born further away from the cutoff preregister
with lower probability. There is a clear jump in the registration rate at the eligibility threshold in either panel. Figure 2
shows the reduced form, plotting the proportion who voted in the 2012 election against proximity to eligibility. In both
panels, there is a small jump in the voting probability at the cutoff.

We use five specifications to compute the fuzzy RD estimator in Equation (7), the sharp RD estimators of the first stage
and reduced form effects, and the associated CIs. For ease of comparison across specifications, all specifications use a
uniform kernel and local linear regression (q = 1). The first specification follows Holbein and Hillygus (2016) and uses
bandwidth set to h = 60 days (or h = 2 months), and the CIs to not account for the potential bias of the estimator. The
second specification differs only in that it uses a slightly larger bandwidth, h = 90 days (or h = 3 months).19 The third
specification uses the robust bias correction (RBC) method of Calonico et al. (2014). For proximity in days, we use the
default “MSE optimal” bandwidth provided by their software package; for proximity in months, we use h = 3.20

The last two methods implement the bias-aware approach. We use CIs given in Equation (4) for the first stage
and reduced form effects; for inference on the fuzzy RD estimand, we use the Noack and Rothe (2021) construction.
Implementing these methods requires a choice of smoothness bounds for the first stage (Mt) and the reduced form
(M𝑦). The results of Low (1997) and Armstrong and Kolesár (2018) imply that picking Mt and M𝑦 in a data-driven way

19These specifications can be interpreted as imposing a parametric linear functional form inside the estimation window. Alternatively, one can justify
them by an “undersmoothing” argument: the specifications implicitly assume that the constants M𝑦 and Mt are small enough so that the bias is negligible
at these bandwidth choices.
20The formal arguments justifying the RBC method and the default bandwidth selector require the running variable to be continuous, which is not the
case in either design. When proximity is measured in months, the discreteness causes implementation issues with the default “MSE optimal” bandwidth
calculations.
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TABLE 1 First stage estimates: effect
of eligibility on preregistration.

OLS RBC Bias-aware inference
(1) (2) (3) (4) (5)

Panel A: Proximity in days
Estimate 0.384 0.379 0.393 0.396 0.381
SE 0.006 0.005 0.008 0.009 0.005
95% CI (0.373, 0.396) (0.370, 0.388) (0.378, 0.409) (0.377, 0.414) (0.371, 0.391)
Bandwidth 60 90 43 28 86
Eff. obs. 63,220 94,118 43,538 28,274 89,776
Rescaled Mt 1.015 0.061

Panel B: Proximity in months
Estimate 0.365 0.363 0.368 0.365 0.365
SE 0.009 0.006 0.017 0.009 0.009
95% CI (0.348, 0.382) (0.351, 0.375) (0.335, 0.402) (0.303, 0.428) (0.345, 0.385)
Bandwidth 2 3 3 2 2
Eff. obs. 64,011 94,662 94,662 64,011 64,011
Rescaled Mt 0.865 0.092

Note: Column (1) uses local linear regression with bandwidth equal to 60 days (panel A) or 2 months (panel
B), without any bias corrections. Column (2) is analogous but uses bandwidth equal to 90 days or 3 months.
Column (3) uses the RBC procedure, with the default “MSE optimal” bandwidth in panel A, and bandwidth
equal to 3 months in panel B. Columns (4) and (5) report bias-aware confidence intervals, with bandwidth
chosen to minimize the worst-case MSE. Column (4) uses the ROT of Armstrong and Kolesár (2020) to
choose the smoothness constant Mt , while Column (5) uses the ROT of Imbens and Wager (2019). Eff. obs
refers to the number of observations inside the estimation window. The smoothness constants are reported
after rescaling the running variable to have support [−1, 1].

without violating coverage requires further nonconvex restrictions on the parameter spaces RD(M𝑦) and RD(Mt) for g
and p.21 A natural way of doing this is to relate the global smoothness of g and p to the local smoothness constants M𝑦 and
Mt. We consider two ways of formalizing how the global and local smoothness relate. In particular, the fourth specifica-
tion assumes, following the proposal in Armstrong and Kolesár (2020), that M𝑦 is bounded by the smoothness of a global
quartic approximation to g on either side of the cutoff, as measured by the largest (in absolute value) second derivative of
the fitted line; we impose an analogous assumption on Mt and p. The fifth specification follows the suggestion in Imbens
and Wager (2019) to use a global quadratic regression instead and, additionally, multiply the largest second derivative of
the fitted line by some moderate factor, taken here to be 2.

Because there are many other reasonable ways of formalizing the idea that the local and global smoothness are related,
we view these methods as merely rules of thumb (ROTs) for selecting the smoothness constants. To assess these rules, we
use the visualization approach proposed in Noack and Rothe (2021), described and implemented in Appendix A.2. These
visualizations suggest that the Armstrong and Kolesár (2020) ROT is quite conservative and allows for g and p to be quite
nonsmooth. The second ROT delivers more optimistic smoothness bounds that generate reasonably smooth conditional
mean functions. To make the smoothness constants comparable across the specifications, we report the implied smooth-
ness constants after rescaling the running variable to have support [−1, 1] (which amounts to multiplying the original
smoothness constants by maxiX2

i and maxi(X∗
i )

2, respectively). Given a choice of the smoothness constants, the band-
width is selected so that the point estimate defined in Equation (3) minimizes the worst-case (over the chosen smoothness
class) finite-sample MSE of the estimator.

3.1 Results

Table 1 presents the first stage estimates, the effect of the preregistration eligibility on preregistration. The estimates are
stable across the specifications, in the range of 38% to 40% when using proximity in days; the estimates using proximity
in months are slightly lower, in the range 36% to 37%, but still indicating a clear jump in the preregistration rate at the
eligibility threshold. This is consistent with our theory, discussed in Remark 1, and reflects the difference between the

21The problem of choosing the smoothness constants is essentially a nonparametric model selection problem. Echoing the difficulties with conducting
valid postmodel selection inference in parametric contexts (e.g., Leeb & Pötscher, 2005), Armstrong and Kolesár (2018) show that bias-aware CIs that
assume the worst-case smoothness are in fact highly efficient at smooth functions. Thus, there is little scope for improvement by using data-driven
choices of the smoothness constants.
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parameters E[T(1) − T(0) |X∗ = 0] (the effect for those born on the cutoff date, November 4) and E[T(1) − T(0) |X = 0]
(the effect for those born in November, the cutoff month). In particular, the latter estimand averages over individuals born
further away from the cutoff date, and Figure 1 suggests that the preregistration probability is decreasing with the distance
to the cutoff. Because X is discrete, the parameter E[T(1) −T(0) |X = 0] is not point identified. The CIs for the bias-aware
specifications, which account for this, are correspondingly wider than those in panel A, albeit they still remain quite tight.

Table 2 presents the reduced form estimates, the effect of preregistration eligibility on voting. The point estimates are
about 3% for both designs and stable across specifications. In line with the discussion in Remark 4, the CIs produced by
the bias-aware specifications are wider when using proximity in months, reflecting the loss of point identification.

Table 3 presents the fuzzy RD estimates of the effect of preregistration on voting. When eligibility is measured in months,
the smaller first stage estimates in panel B of Table 1 translate to larger estimates of the effect of preregistration on voting,
around 10%, compared with 7% to 8% when eligibility is measured in days. When eligibility is measured in months,
the fuzzy RD estimand, 𝜏F , is the ATE for compliers born in November 1990, and thus averages over individuals born
further away from the cutoff than the estimand 𝜏∗F when eligibility is measured in days, which corresponds to the ATE
for compliers born on November 4, 1990. If the treatment effect for compliers born x days from the eligibility threshold,
𝜏∗F(x) = E[Y (1) − Y (0) |ℭ,X∗ = x], is increasing in x, then 𝜏F will be larger than 𝜏∗F , which is consistent with the results in
Table 3. However, the bias-aware CIs are fairly wide and also consistent with 𝜏∗F(x) being constant.

OLS RBC Bias-aware inference
(1) (2) (3) (4) (5)

Panel A: Proximity in days
Estimate 0.028 0.027 0.032 0.031 0.028
SE 0.008 0.007 0.012 0.012 0.007
95% CI (0.012, 0.044) (0.014, 0.040) (0.008, 0.056) (0.005, 0.058) (0.013, 0.044)
Bandwidth 60 90 38 29 83
Eff. obs. 63,220 94,118 39,195 29,285 86,881
Rescaled M𝑦 1.401 0.099

Panel B: Proximity in months
Estimate 0.037 0.034 0.042 0.037 0.034
SE 0.013 0.009 0.025 0.013 0.009
95% CI (0.012, 0.062) (0.017, 0.051) (−0.007, 0.090) (−0.085, 0.159) (0.009, 0.059)
Bandwidth 2 3 3 2 3
Eff. obs. 64,011 94,662 94,662 64,011 94,662
Rescaled M𝑦 1.818 0.121

Note: See Table 1.

TABLE 2 Reduced form estimates:
effect of eligibility on voting.

OLS RBC Bias-aware inference
(1) (2) (3) (4) (5)

Panel A: Proximity in days
Estimate 0.073 0.072 0.076 0.080 0.074
SE 0.021 0.018 0.032 0.031 0.018
95% CI (0.031, 0.114) (0.037, 0.106) (0.013, 0.139) (0.012, 0.143) (0.034, 0.122)
Bandwidth 60 90 36 29 83
Eff. obs. 63,220 94,118 35,785 29,285 86,881
Rescaled M𝑦 1.401 0.099
Rescaled Mt 1.015 0.061

Panel B: Proximity in months
Estimate 0.101 0.094 0.113 0.101 0.094
SE 0.035 0.024 0.068 0.035 0.024
95% CI (0.034, 0.169) (0.047, 0.141) (−0.020, 0.246) (−0.268, 0.505) (0.023, 0.180)
Bandwidth 2 3 3 2 3
Eff. obs. 64,011 94,662 94,662 64,011 94,662
Rescaled M𝑦 1.818 0.121
Rescaled Mt 0.865 0.092

Note: See Table 1.

TABLE 3 Fuzzy RD estimates of
the effect of preregistration on voting.
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4 SUMMARY AND CONCLUSIONS

Measurement error is a common feature of RD applications. We show that its presence does not have deleterious effects
on the validity of existing inference methods, provided that one employs doughnut trimming to ensure that the observed
running variable X correctly classifies the treatment assignment. Care needs to be taken when interpreting the estimand:
It corresponds to the ATE for units with the observed running variable X equal to the cutoff, rather than the usual param-
eter, the ATE for units with the latent running variable X∗ equal to the cutoff. We illustrate this point in an empirical
application.
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APPENDIX A: AUXILIARY RESULTS

A.1 Effect of measurement error on smoothness of conditional mean

We now formalize the notion that measurement error smooths out nonlinearities in g∗t . To this end, first, we introduce
some definitions. For a real-valued function on a bounded set in R

d, and a multi-index 𝛼 = (𝛼1, … , 𝛼d), let D𝛼𝑓 =
𝜕
∑d

𝑗=1 𝛼𝑗 𝑓∕𝜕x𝛼1
1 · · · 𝜕x𝛼d

d . For an integer k, let ‖𝑓‖Ck+1 =
∑| 𝛼 |≤ksupx |D𝛼𝑓 (x) | + ∑| 𝛼 |=ksupx≠𝑦 |𝑓 (k)(x) − 𝑓 (k)(𝑦) |∕ ‖x − 𝑦‖

denote the Hölder norm, with the convention that ‖𝑓‖C0 = supx |𝑓 (x) | and that ‖𝑓‖Ck = ∞ if 𝑓 is not (k − 1)-times
differentiable. We say that 𝑓 has Hölder smoothness index k if ‖𝑓‖Ck < ∞ (e.g., van der Vaart & Wellner, 1996, Section
2.7.1). This quantifies the “smoothness” of 𝑓 (k is also called the Hölder exponent; for simplicity, we focus attention on
exponents that are integers). In other words, 𝑓 has smoothness k if it is k times differentiable almost everywhere, with
the derivatives bounded.

The next result shows that if (a) the conditional density of 𝑓 (e; x) of e given X = x is sufficiently smooth in the second
argument and (b) g∗t (x, e) is also sufficiently smooth in the second argument, then the smoothness of gt is given by the
sum of the smoothness indices of x → g∗t (x, e) and that of e → 𝑓 (e; x). This makes precise the notion that measurement
error “smooths out” the nonlinearities in g∗t .

https://doi.org/10.1257/aer.103.3.550
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https://doi.org/10.1002/jae.2974


DONG and KOLESÁR 15

Lemma A.1. Suppose that (X , e) has bounded support and that the distribution of e given X = x is continuous with
bounded density 𝑓 (e; x) such that ‖𝜕s𝑓∕𝜕xs‖Cr < ∞ for some nonnegative integers r, s. Let h(x, e) be a function such that
supe‖𝜕rh(·, e)∕𝜕er‖Cs < ∞. Then, g(x) ∶= E[h(X + e, e) |X = x] has smoothness s + r.

Proof. Because the lower order derivatives D(0,k−1)𝑓 (e; x) and D(k−1,0)h(x + e, e) exist and are Lipschitz continuous for
k ≤ s, by dominated convergence theorem, we can take a derivative under the integral sign using the Leibniz product
rule, so that, for all x,

g(s)(x) = ∫
s∑

k=0

( s
k

)
D(k,0)h(x + e, e)D(0,s−k)𝑓 (e; x)de.

Thus,

g(r+s)(x) =
s∑

k=0

( s
k

) dr

dxr ∫ D(k,0)h(𝑦, 𝑦 − x)D(0,s−k)𝑓 (𝑦 − x; x)d𝑦

=
s∑

k=0

r∑
u=0

u∑
v=0

( s
k

)( r
u

)(u
v

)
(−1)r−u+v ∫ D(k,r−u)h(𝑦, 𝑦 − x)D(v,s−k+u−v)𝑓 (𝑦 − x; x)d𝑦,

where the first line follows by change of variables and the second line by the dominated convergence theorem
and Leibnitz product rule. Because D(k,r−u)h(𝑦, 𝑦 − x) and D(v,s−k+u−v)𝑓 (𝑦 − x; x) are bounded, it follows that g(r+s)

is bounded.

A.2 Visualization of smoothness constants

Here, we assess the smoothness constants suggested by the ROTs using the visualization approach proposed in Noack
and Rothe (2021). To explain the approach, suppose that we are interested in a sharp RD regression of an outcome Ỹi
on a running variable X̃i and make the assumption that the conditional mean satisfies E[Ỹi | X̃i] ∈ RD(M). To assess the
plausibility of the smoothness bound M, we regress Ỹi on a basis function transformation g(X̃i) of X̃i and the interaction
of g(X̃i) with I{X̃i ≥ 0}. To ensure that the estimated regression function lies in RD(M), we minimize the sum of squared
residuals subject to the constraint that the second derivative of the estimated regression function be no larger than M and
equal M at the cutoff. If the basis is sufficiently flexible, the estimated regression function will tend to overfit the data and
therefore represent an extremal element of RD(M). If the estimated regression function appears relatively smooth, this
thus is an indicator that the choice of M is quite optimistic; if we are clearly overfitting the data, it signals that the choice
of M is conservative—it is unlikely that E[Ỹi | X̃i] lies outside RD(M).

We use this method to assess the plausibility of the ROTs that we used to calibrate the bounds M𝑦 and Mt in the first
stage and reduced form sharp RD regressions. In the former, the outcome Ỹi corresponds to the treatment variable Ti,
while in the latter, Ỹi = Yi. To implement the method, as a basis function, we use a quadratic spline with 21 knots on each
side of the cutoff when proximity is measured in days and with six knots when it is measured in months.

FIGURE A.1 Visualization of extreme
conditional mean functions in the class
RD(Mt), for different choices of the first stage
smoothness constant Mt. Note: Orange dotted
line visualizes the choice of Mt based on the
ROT proposed by Imbens and Wager (2019).
Blue solid line visualizes Mt based on the ROT
proposed by Armstrong and Kolesár (2020).
Values of these constants are given in Columns
(4) and (5) of Table 1. In panel (a), proximity is
measured in days, and each point corresponds
to an average of 1000 individuals. In panel (b),
proximity is measured in months, and each
point corresponds to an average across all
individuals born in a given month.
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FIGURE A.2 Visualization of extreme
conditional mean functions in the class
RD(M𝑦), for different choices of the reduced
form smoothness constant M𝑦. Note: Orange
dotted line visualizes the choice of M𝑦 based on
the ROT proposed by Imbens and Wager (2019).
Blue solid line visualizes M𝑦 based on the ROT
proposed by Armstrong and Kolesár (2020).
Values of these constants are given in Columns
(4) and (5) of Table 2. In panel (a), proximity is
measured in days, and each point corresponds
to an average of 1000 individuals. In panel (b),
proximity is measured in months, and each
point corresponds to an average across all
individuals born in a given month.

Figure A.1 visualizes the choices for the first stage smoothness constant Mt, as estimated by the ROTs proposed by
Armstrong and Kolesár (2020) and Imbens and Wager (2019). Both choices ROTs appear reasonable based on the figure.
Figure A.2 gives an analogous visualization for the choices for the reduced form smoothness constant M𝑦. Here, the
ROT proposed by Armstrong and Kolesár (2020) is quite conservative, while the Imbens and Wager (2019) ROT is more
optimistic.
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