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This article extends the standard regression discontinuity (RD) design to allow for sample selection or
missing outcomes. We deal with both treatment endogeneity and sample selection. Identification in this
article does not require any exclusion restrictions in the selection equation, nor does it require specifying
any selection mechanism. The results can therefore be applied broadly, regardless of how sample selection
is incurred. Identification instead relies on smoothness conditions. Smoothness conditions are empirically
plausible, have readily testable implications, and are typically assumed even in the standard RD design.We
first provide identification of the “extensive margin” and “intensive margin” effects. Then based on these
identification results and principle stratification, sharp bounds are constructed for the treatment effects
among the group of individuals that may be of particular policy interest, that is, those always participating
compliers. These results are applied to evaluate the impacts of academic probation on college completion
and final GPAs. Our analysis reveals striking gender differences at the extensive versus the intensivemargin
in response to this negative signal on performance.

KEY WORDS: Extensive margin; Fuzzy design; Gender differences; Intensive margin; Missing
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1. INTRODUCTION

One of the frequently encountered issues in empirical appli-
cations of regression discontinuity (RD) designs is the issue
of sample selection or missing outcomes. Intuitively, identifi-
cation in the standard RD design relies on comparability of
observations right above and right below the RD threshold
(Hahn, Todd, and van der Klaauw 2001; see also the discus-
sion in Dong 2016). Differential sample selection or missing
outcomes near the RD threshold may undermine such compa-
rability and hence the standard RD design is not valid. Recent
empirical studies highlighting this issue include (Martorell and
McFarlin 2011; McCrary and Royer 2011; Kim 2012) among
others.
McCrary and Royer (2011) estimated the impacts of female

education on fertility and infant health, utilizing an RD
design based on the age-at-school-entry policy. Infant health
is observed only for those women who give birth, a selected
sample where ample selection (the fertility decision) itself may
depend on women’s education. The selection bias is corrected
by controlling for the inverse Mills ratio (Heckman 1979). No
exclusion restriction is present in the selection equation. This
approach therefore relies entirely on the distributional assump-
tion requiring the error term in the sample selection equation
and that in the outcome equation to follow a joint normal dis-
tribution. See also Martorell and McFarlin (2011) for a simi-
lar approach in their RD design, where sample selection arises
because earnings are not observed for those who do not work.
In addition, Kim (2012) estimated the effects of taking reme-

dial courses on students’ performance in the subsequent main
courses. Only those who take and complete the subsequent
courses have available their performance measures. Following

a similar approach to Lee (2009), Kim (2012) provided bounds
on the treatment effects in his sharp RD design.
Various parametric, semi-parametric, or nonparametric

estimators exist for sample selection models with or without
endogeneity. See, for example, Heckman (1979, 1990), Ahn and
Powell (1993), Andrews and Schafgans (1998), Das, Newey,
and Vella (2003), and Lewbel (2007). See also Vella (1998)
for a survey on estimation of sample selection models. Exist-
ing sample selection corrections typically require exclusion
restrictions when not making functional form or distributional
assumptions. They may not work well in the above empirical
applications of RD designs due to the absence of plausible
exclusion restrictions.
This article extends the standard RD design to allow for dif-

ferential sample selection or missing outcomes above or below
the RD cutoff. We focus on fuzzy designs, with sharp designs
following as a special case. We deal with both treatment endo-
geneity and sample selection. To our best knowledge, so far
there do not exist any studies that provide formal identification
of treatment effects in RD designs when sample selection results
in incomparability of observations near the RD threshold.
This article first provides point identification of the extensive

and intensive margin effects on the observed outcome distribu-
tion. Then based on these point identification results, bounds
are established on subgroup treatment effects. Identification
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here does not require any exclusion restrictions in the selection
equation. The key assumptions are similar to those employed
in the standard RD design. Identification here also does not
require specifying any selection mechanism. Sample selection
can result from non-participation (e.g., dropout or unemploy-
ment), survey nonresponse, or other reasons (e.g, censoring by
death).
With nonnegative outcomes such as wage or health care uti-

lization, the observed outcome for non-participants (those who
do not work or do not use health care) is zero. In contrast, when
the outcome is test score or other performance measure, the out-
come for non-participants is truly not observed. Average treat-
ment effects (ATEs) or local average treatment effects (LATEs)
in general are not identified in the first place. We explicitly con-
sider the latter case where outcomes are missing nonrandomly,
but all our results apply to both cases.
Except for the standard RD literature, a few other studies

are related.1 Frandsen (2015) provided identification of treat-
ment effects in a general model where the outcome is cen-
sored. Frandsen assumed random censoring, which we do not
assume here. Staub (2014) proposed a framework to decompose
the ATE for nonnegative outcomes, assuming that the LATE is
already identified. In contrast, here ATEs or LATEs are not point
identified, since we do not observe outcomes for nonpartici-
pants, for example, test scores for dropouts. Staub also discussed
bounds on subpopulation-specific ATEs by restricting the sign
of the treatment effects, while we do not impose any sign restric-
tions.2 In addition, Chen and Flores (2014) provided bounds on
treatment effects in randomized experiments when both sample
selection and noncompliance are present. Unlike their bounds,
we provide sharp bounds.
We apply our identification results to evaluate the impacts

of academic probation on college completion and final GPAs,
using confidential data from a large Texas university. The pro-
posed approach yields empirical evidence that is different from
that by the standard RD design. We show striking gender dif-
ferences in response to this negative signal on performance.
Women are significantly more likely to drop out when placed
on probation. In contrast, probation has little impacts on men’s
dropout probability. Men seem to cope with this negative sig-
nal by temporarily improving their performance to avoid being
suspended.
The rest of the article proceeds as follows. Section 2 provides

identification of the extensive and intensive margin effects.
Section 3 provides sharp bounds on the treatment effect for
the always participating compliers. Also discussed is iden-
tifying characteristics of subgroups of compliers. Section 4

1Identification of the standard RD design has been discussed in Hahn, Todd, and
van der Klaauw (2001), Lee (2008), and Dong (2016). Inference was discussed
by Porter (2003), Imbens and Kalyanaraman (2012), Calonico, Cattaneo, and
Titiunik (2014), Cattaneo, Frandsen, and Titiunik (2015), Otsu, Xu, and Mat-
sushita (2015), and Feir, Lemieux, and Marmer (2016). See Cattaneo, Titiuni,
and Vazquez-Bare (2016) for a comparison of different inference approaches
for the standard RD design.
2In particular, Staub (2014) discussed bounds under two alternative assump-
tions. The first assumption assumes that treatment effects are nonnegative for
everyone. The second assumption assume that treatment effects are nonnega-
tive for switchers and have the same sign for always participants, and further
that one knows that ATE > 0 or ATE < 0.

presents the empirical application. Section 5 concludes. The
main text focuses on bounds on average treatment effects.
Proofs and additional bounds on the corresponding quantile
treatment effects are provided in the Appendices.

2. IDENTIFICATION OF THE EXTENSIVE AND
INTENSIVE MARGIN EFFECTS

Let T be a binary treatment, so T = 1 when one is treated
and 0 otherwise. Let R be the so-called running or forcing
variable that determines the assignment of the treatment. At a
known threshold R = r0, the treatment probability has a discrete
change. Let Y ∗ be the outcome of interest, which is observed
only for a non-randomly selected sample. Further let Y be the
observed outcome and S be a binary sample selection indicator,
so Y = Y ∗ if S = 1, and Y is missing if S = 0 . For example, T
can be an indicator for placement on academic probation, and R
can be the grade point average (GPA) used to determine place-
ment on academic probation. Y ∗ can then be later performance,
which is observed only for students who do not drop out, so S
is an indicator for enrolling in school.
Given data on Y , S, T , and R, as a first step we are interested

in identifying the treatment effect on the sample selection prob-
ability, the extensive margin effect. We are also interested in
the intensive margin effect, that is, the treatment effect on the
observed outcome conditional on being selected into the sam-
ple. Here, we take advantage of the RD design to address both
treatment endogeneity and sample selection, so both the exten-
sive and intensive margin effects are only identified locally at
the RD cutoff R = r0 among the so-called compliers.
Let Y ∗

t for t = 1, 0, be an individual’s potential outcome
under treatment or no treatment, and Y ∗ = Y ∗

1 T + Y ∗
0 (1 − T ).

Similarly define St for t = 1, 0 as the potential sample selection
under treatment or no treatment.3 The observed selection status
is then S = S1T + S0(1 − T ). Identification in this article does
not require knowing the selection mechanism, so no selection
model or DGP for S is specified.
Let r be a value R can be taken on. All the following discus-

sion applies to r ∈ (r0 − ε, r0 + ε) for some small ε > 0. Let
Z = 1(R ≥ r0), where 1(·) is an indicator function equal to 1
if the expression in the bracket is true and 0 otherwise. Given
R = r, define Tz(r), z = 1, 0, as an individual’s potential treat-
ment status above or below the RD cutoff. For example, for an
individual with the observed running variable r > 0, T1(r) is
her observed treatment, while T0(r) is her counterfactual treat-
ment if she were below the cutoff.4 We can then define four
types of individuals in a common probability space (�, F , P)
(Angrist, Imbens, and Rubin 1996): always taker is the event
T1(r) = T0(r) = 1; never taker is the event T1(r) = T0(r) = 0;
complier is the event T1(r) − T0(r) = 1, and defier is the event
T1(r) − T0(r) = −1. For notational convenience, we simply use

3Y ∗
t ≡ Y ∗(t, St ) for t = 0, 1.

4Assume T = h(R,V ) for unobservablesV , which can be a vector. Without loss
of generality, one can write T = h1(R,V )Z + h0(R,V )(1 − Z). The function
hz(R,V ) for z = 0, 1 describes the treatment assignment below or above the
cutoff. Define then Tz(r) ≡ hz(r,V ) for z = 0, 1.
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T1 and T0 to denote T1(r) and T0(r), respectively. Note that, how-
ever, just as potential outcomes can depend on the running vari-
able, individual types can implicitly be functions of the running
variable.
Formally define the extensive margin effect as

E[S1 − S0|R = r0,C] and the intensive margin effect as
E[Y ∗

1 |S1= 1,R = r0,C] − E[Y ∗
0 |S0= 1,R = r0,C]. The exten-

sive margin effect captures how the participation probability
differs under treatment or no treatment, while the intensive
margin effect captures how the observed outcomeis expected to
differ in these two counterfactual states of treatment.
Unlike the extensive margin effect, the intensive margin

effect in general does not represent a causal effect at the indi-
vidual level. For example, the intensive margin effect typically
is different from the treatment effect for the always partici-
pating individuals, since participation is likely to change with
treatment. Instead, one may view the intensive margin effect
as a causal parameter from the distributional point of view.
This is similar to the distributional effects frequently estimated
in the program evaluation literature. The distributional effects
of a social program or treatment, represented by quantile
treatment effects(QTEs), generally do not capture individual
causal effects unless rank invariance or rank preservation holds
(see, e.g., the discussion in Heckman, Smith, and Clements
1997 and the nonparametric tests for this assumption in Dong
and Shen 2016). However, if what policy makers care about
is how the outcome distribution changes with the treatment,
then the QTE or similarly the intensive margin effect is the
treatment effect of policy interest. In our empirical application,

the outcome of primary interest is ther final GPA in college.
The extensive margin effect measures the impact of aca-
demic probation on the probability of completing college,
while the intensive margin effect measures how academic
probation affects the GPA (measuring quality or train-
ing) of college graduates, regardless of the composition
change.
Let F·|·(·|·) or F·|·(·) denote the conditional distribution func-

tion throughout the article.

Assumption 1. The following assumptions hold jointly with
probability 1 for r ∈ (r0 − ε, r0 + ε).

A1. (Discontinuity): limr↓r0 E[T |R = r] �= limr↑r0 E[T |R = r].
A2. (Monotonicity): Pr(D) = 0.
A3. (Smoothness): FY ∗

t ,St |R,×(y, s|r) for s, t ∈ {0, 1} and × ∈
{A,N,C} are continuous at r0. Pr(×|R = r) for × ∈
{A,N,C} is continuous at r0. The density of R is contin-
uous and strictly positive at r0.

A1 and A2 are the standard RD identifying assumptions
(Hahn, Todd, and van der Klaauw 2001). A1 requires a positive
fraction of compliers at the RD threshold. A2 is a monotonic-
ity assumption ruling out no defiers. A2 can be weakened by the
assumption that conditional on the values of potential outcomes,
there are more compliers than defiers (de Chaisemartin 2014).

A3 requires that the conditional joint distribution of poten-
tial outcomes and potential sample selection conditional on the
running variable is continuous.5 The observed sample selection
S = S0 + T (S1 − S0) is allowed to change at the RD cutoff. In
contrast, in the standard RD design, only the conditional distri-
bution of potential outcomes, FY ∗

t |R,×(y|r) for × ∈ {A,N,C}, is
required to be continuous (see, e.g., Hahn, Todd, and van der
Klaauw 2001; Dong 2016).

The smoothness conditions in A3 are imposed on the full
sample of observations with or without missing outcomes. The
standard RD argument applies that covariates are not needed
for consistency in estimating unconditional treatment effects,
though they can be useful for improving efficiency or for test-
ing validity of the RD design. A3 is plausible given no precise
manipulation of the running variable and hence no sorting—the
typical argument for the standard RD design identification (Lee
2008).

A3 has readily testable implications. One can follow the stan-
dard RD validity tests to test smoothness of the density of the
running variable (McCrary 2008; Cattaneo, Jansson, and Ma
2016) and smoothness of the conditional means of predeter-
mined covariates at the RD cutoff.

Theorem 1. Let g(·) be any measurable real function such that
E|g(·)| < ∞. If Assumption 1 holds, then for t = 0, 1,

E
[
g
(
Y ∗
t

) |St= 1,R = r0,C
]

= limr↓r0 E [1 (T = t ) g (Y ∗) S|R = r] − limr↑r0 E [1 (T = t ) g (Y ∗) S|R = r]

limr↓r0 E [1 (T = t ) S|R = r] − limr↑r0 E [1 (T = t ) S|R = r]
, (1)

and

E [St |R = r0,C] = limr↓r0 E [1 (T = t ) S|R = r] − limr↑r0 E [1 (T = t ) S|R = r]

limr↓r0 E [1 (T = t ) |R = r] − limr↑r0 E [1 (T = t ) |R = r]
. (2)

Note that g(Y ∗)S in the above is observed and is equal
to g(Y ) if S = 1, and 0 if S = 0. When g(Y ∗) = 1(Y ∗ ≤ y)
for y in R from the distribution of (Y, S,T,R), Equation
(1) identifies FY ∗

t |St=1,R=r0,C(y) for t = 0, 1, the counter-
factual distribution of observed outcomes under treatment
or no treatment. When g(Y ∗) = Y ∗, Equation (1) identi-
fies E[Y ∗

t |St= 1,R = r0,C] and hence the intensive margin
E[Y ∗

1 |S1= 1,R = r0,C] − E[Y ∗
0 |S0= 1,R = r0,C] . In addi-

tion, given Equation (2), the extensive margin can be simplified
to the standard fuzzy RD estimand,

E [S1 − S0|R = r0,C]

= limr↓r0 E [S|R = r] − limr↑r0 E [S|R = r]

limr↓r0 E [T |R = r] − limr↑r0 E [T |R = r]
.

5Alternatively, one could assume that FY∗
t ,St ,�|R(y, s|r) for any � ∈ {A,N,C} is

continuous at r0.
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If the probability of sample selection is smooth at the RD
threshold, that is, limr↓r0 E[S|R = r] = limr↑r0 E[S|R = r], then
the extensive margin effect E[S1 − S0|R = r0,C] = 0, and fur-
ther for t = 0, 1,

E
[
g
(
Y ∗
t

) |St= 1,R = r0,C
]

= limr↓r0 E [g (Y ∗) 1 (T = t ) |R = r, S = 1] − limr↑r0 E [g (Y ∗) 1 (T = t ) |R = r, S = 1]

limr↓r0 E [1 (T = t ) |R = r, S = 1] − limr↑r0 E [1 (T = t ) |R = r, S = 1]
.

Applying 1(T = 1) = 1 − 1(T = 0) yields

E
[
g
(
Y ∗
1

) |S1= 1,R = r0,C
]− E

[
g
(
Y ∗
0

) |S0= 1,R = r0,C
]

= limr↓r0 E [g(Y )|R = r, S = 1] − limr↑r0 E [g(Y )|R = r, S = 1]

limr↓r0 E [T |R = r, S = 1] − limr↑r0 E [T |R = r, S = 1]
.

(3)

That is, the intensive margin effect can be identified by the stan-
dard RD estimand using only the selected sample in this case.
Note that, however, even if limr↓r0 E[S|R = r] =

limr↑r0 E[S|R = r], Equation (3) in general does
not identify E[g(Y ∗

1 )|S = 1,R = r0,C] − E[g(Y ∗
0 )

|S = 1,R = r0,C], a causal effect for the selected
sample. If further limr↓r0 E[g(Y

∗
t )|S = 1,R = r,C] =

limr↓r0 E[g(Y
∗
t )|S = 1,R = r,C] for t = 0, 1, that is,

E[g(Y ∗
t )|S = 1,R = r,C] is continuous at r = r0, then

E[g(Y ∗
t )|St = 1,R = r0,C] = E[g(Y ∗

t )|S = 1,R = r0,C], and
hence Equation (3) would identify E[g(Y ∗

1 )|S = 1,R = r0,C]
−E[g(Y ∗

0 )|S = 1,R = r0,C]. In particular,

E
[
g
(
Y ∗
1

) |S1= 1,R = r0,C
] = lim

r↓r0
E
[
g
(
Y ∗
1

) |S1= 1,R = r,C
]

= lim
r↓r0

E
[
g
(
Y ∗
1

) |S = 1,R = r,C
]

= E
[
g
(
Y ∗
1

) |S = 1,R = r0,C
]
,

where the first equality follows from Assumption A3, the sec-
ond quality follows from the fact that T = 1 for C when r >

r0, and S = S1 when T = 1, while the last quality follows
from continuity of E[g(Y ∗

1 )|S = 1,R = r,C]. One can similarly
show E[g(Y ∗

0 )|S0= 1,R = r0,C] = E[g(Y ∗
0 )|S = 1,R = r0,C],

given continuity of E[g(Y ∗
0 )|S = 1,R = r,C].6

To estimate the extensive and intensive margin effects, the
standard RD estimation can be applied, since both parame-
ters involve strictly conditional means at a boundary point. Let
g(Y ∗) = Y ∗, local linear or polynomial regressions can be used
to consistently estimate the four discontinuities in Equations (1)
and (2). Bandwidth choices can follow the plug-in approaches
of Imbens and Kalyanaraman (2012) or Calonico, Cattaneo and
Titiunik (2014, CCT hereafter).

Alternatively, one can apply the standard fuzzy RD estimator
to estimate the extensive margin effect E[S1 − S0|R = r0,C].7

One can also apply the standard fuzzy RD estimator to estimate
E[Y ∗

t |St= 1,R = r0,C] for t = 0, 1 and hence the difference or

6That is, smoothness conditions need to hold for the selected sample in order
for Equation (3) to identify a causal effect for the selected sample.
7In practice, the fuzzy RD estimator along with its robust bias-corrected infer-
ence can be conveniently implemented using the Stata command rdrobust.ado
(https://sites.google.com/site/rdpackages/rdrobust).

the intensive margin effect, using 1(T = t )Y ∗S as the outcome
and 1(T = t )S as the treatment. Standard errors can be obtained
by bootstrap.

3. BOUNDS ON SUBGROUP TREATMENT EFFECTS

The previous section shows identification of the extensive and
intensive margin effects. Sample composition may change with
the treatment status, so those with S1 = 1 are not necessarily the
same individuals as those with S0 = 1. For example, the subpop-
ulation with S1 = 1 would involve new participants if treatment
increases participation, or would not include quitters if treat-
ment reduces participation. This section further discusses iden-
tification of subgroup treatment effects.
The analysis extends the discussion in Angrist (2001).

Angrist noted that in the case of nonnegative outcomes with
a nontrivial fraction of zeros (e.g., wages or health care uti-
lization), the conditional-on-positives (COP) effect does not
measure the true causal impact of any treatment on participating
individuals.
Following principle stratification (Frangakis and Rubin

2002), one can classify individuals into four sub-groups based
on their joint distribution of potential sample selection status:
new participants (S0 = 0, S1 = 1), quitters (S0 = 1, S1 = 0),
never participants (S0 = S1 = 0) and always participants
(S0 = 1, S1 = 1). Further note that the RD design only iden-
tifies treatment effects locally among compliers, so these
four types are defined among compliers. That is, we essentially
define principle strata based on the joint distribution of potential
sample selection and potential treatment.
Nonparametrically, one cannot achieve point identifica-

tion of the treatment effect for each sub-group of compliers.
However, one may construct sharp bounds on the treat-
ment effect of those always participating compliers, that is,
E[Y ∗

1 − Y ∗
0 |S0 = 1, S1= 1,R = r0,C]. The treatment effect for

this group measures the true causal effect of the treatment that
is not due to changes in participation (Lee 2009). In the case of
academic probation, this parameter measures the causal effect
of academic probation among a stable group of students who
would stay in college regardless of whether they are on proba-
tion or not. We focus on deriving bounds on average treatment
effects. Bounds on the corresponding quantile treatment effects
are provided in Online Supplemental Appendix I.8

Define pt ≡ E[St |R = r0,C], t = 0, 1, which is iden-
tified by Equation (2) of Theorem 1. Further define
pjk ≡ Pr(S0 = j, S1 = k|,R = r0,C) , j, k = 0, 1. The iden-
tified distributions in Theorem 1 can be decomposed as

8Zhang and Rubin (2003) and Imai (2008) discussed similar bounds in the con-
text of randomized experiments with perfect compliance. See also Lee (2009),
Blanco, Flores, and Flores-Lagunes (2013), and Chen and Flores (2014) for con-
struction of bounds in evaluating the effects of Job Corps.

https://sites.google.com/site/rdpackages/rdrobust
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follows:

FY ∗
1 |S1=1,R=r0,C(y) = FY ∗

1 |S0=1,S1=1,R=r0,C(y)
p11
p1

+FY ∗
1 |S0=0,S1=1,R=r0,C (y)

p01
p1

,

and

FY ∗
0 |S0=1,R=r0,C(y) = FY ∗

0 |S0=1,S1=1,R=r0,C(y)
p11
p0

+FY ∗
0 |S0=1,S1=0,R=r0,C (y)

p10
p0

.

The above expressions involve fractions of three types of indi-
viduals, p11, p01, and p10. Without further assumptions, these
fractions are not point identified. However, it is easy to show
that assuming p11 > 0,

p11 ∈ P ≡(0, 1] ∩ [p0 + p1 − 1,min {p0, p1}] .
General bounds for E[Y ∗

1 − Y ∗
0 |S1= 1, S0 = 1,R = r0,C] can

then be constructed by following the approach of Horowitz and
Manski (1995). Define Qt (τ )≡F−1

Y ∗
t |St=1,R=r0,C(τ ) for τ ∈ (0, 1)

and t = 0, 1. For simplicity, let−∞ = inf{y:y ∈ Y} and+∞ =
sup{y:y ∈ Y}, where Y ⊆ R is the support of Y ∗

t |St = 1, r =
r0,C, for t = 0, 1. In the worst-case (best-case) scenario, the
smallest (largest) p11/p1 values of Y1 in the conditional distri-
bution Y ∗

1 |S1 = 1,R = r0,C and the largest (smallest) p11/p0
values of Y0 of in Y ∗

0 |S0 = 1,R = r0,C belong to always partic-
ipants. That is, L ≤ E[Y ∗

1 − Y ∗
0 |S1= 1, S0 = 1,R = r0,C] ≤ U ,

where

L ≡ min
p11∈P

(
p1
p11

∫ Q1(p11/p1 )

−∞
ydFY ∗

1 |S1=1,R=r0,C(y)

− p0
p11

+∞

Q0(1−p11/p0 )
ydFY ∗

0 |S0=1,R=r0,C(y)

)
,

and

U ≡ max
p11∈P

(
p1
p11

+∞

Q1(1−p11/p1 )
ydFY ∗

1 |S1=1,R=r0,C(y)

− p0
p11

Q0(p11/p0 )

−∞
ydFY ∗

0 |S0=1,R=r0,C(y)
)

.

These bounds are typically too wide to be informative
in practice. In the following, we consider two commonly
employed assumptions to tighten the bounds for E[Y ∗

1 −
Y ∗
0 |S1= 1, S0 = 1,R = r0,C].

3.1 Bounds Under Monotonic Selection

Given pt ≡ E[St |R = r0,C], t = 0, 1, ruling out one type of
compliers allows one to identify the fractions of the remain-
ing two types. We therefore impose the following monotonicity
assumption.

Assumption 2. (Monotonic Selection): Pr(S0 ≥ S1) = 1.

Assumption 2 requires that treatment can only affect sample
selection in “one direction,” in particular, everyone is less likely
to participate under treatment. Derivation for S1 ≥ S0 is sym-
metric to that for S0 ≥ S1, so for now we focus on S0 ≥ S1. In

our empirical scenario, this assumption assumes that academic
probation induces individuals to quit rather than to participate,
which is plausible. Existing studies have shown that probation
increases the probability of dropout (Lindo, Sanders, and Ore-
opoulos 2010). Monotonic selection is frequently used in con-
structing bounds in similar setting (see, for example, Zhang
and Rubin 2003; Imai 2008; Lee 2009; Blanco, Flores, and
Flores-Lagunes 2013; Chen and Flores 2014, in the context of
randomized experiments). Such a monotonicity assumption is
consistent with a latent index sample selection model with an
additively separable latent error (Heckman 1979, 1990; Vytlacil
2002). Following similar arguments to those in de Chaisemartin
(2014), one can alternatively assume that conditional on poten-
tial outcomes, there are more quitting than newly participating
compliers.
Under Assumption 2, the subpopulation with S1 = 1 consists

of only always participants, that is, those having S0 = 1 and
S1 = 1, while the subpopulation with S0 = 1 consists of always
participants (S0 = 1, S1 = 1) and quitters (S0 = 1, S1 = 0). Let
q = p10/p0 denote the fraction of quitters among the subpopu-
lation with S0 = 1.

FY ∗
1 |S1=1,R=r0,C(y) = E

[
1
(
Y ∗
1 ≤ y

) |S1= 1, S0 = 1,R = r0,C
]
,

(4)
and

FY ∗
0 |S0=1,R=r0,C(y)

= E
[
1
(
Y ∗
0 ≤ y

) |S1= 1, S0 = 1,R = r0,C
]
(1 − q)

+E
[
1
(
Y ∗
0 ≤ y

) |S1= 0, S0 = 1,R = r0,C
]
q. (5)

The worst-case (best-case) scenario is that the largest
(smallest) 1 − q observations in the conditional distribution
Y ∗
0 |S0= 1,R = r0,C belong to always participants and the
smallest (largest) q observations belong to quitters. It follows
that

E
[
Y ∗
0 |S1= 1, S0 = 1,R = r0,C

]
≤ E

[
Y ∗
0 |S0= 1,Y ∗

0 � Q0 (q) ,R = r0,C
]
, and

E
[
Y ∗
0 |S1= 1, S0 = 1,R = r0,C

]
≥ E

[
Y ∗
0 |S0= 1,Y ∗

0 ≤ Q0 (1 − q) ,R = r0,C
]
. (6)

The quantiles Q0(τ ) for τ = 1 − q, q can be obtained
from the identified conditional distribution FY ∗

0 |S0=1,R=r0,C(y)
by Theorem 1, once one knows q. In particular, Q0(τ ) =
inf{y:FY ∗

0 |S0=1,R=r0,C(y) ≥ τ }. The following Lemma 1 provides
identification of q.

Lemma 1. 1 If Assumptions 1 and 2 hold, then

q = limr↓r0 E [S|R = r] − limr↑r0 E [S|R = r]

limr↓r0 E [S (1 − T ) |R = r] − limr↑r0 E [S (1 − T ) |R = r]
.

(7)

Further by the inequalities in (6), we obtain the following
bounds.

Theorem 2. If Assumptions 1 and 2 hold, then Lm ≤ E[Y ∗
1 −

Y ∗
0 |S1= 1, S0 = 1,R = r0,C] ≤ Um, where

Lm ≡ E
[
Y ∗
1 |S1= 1,R = r0,C

]
− 1

1 − q

∫ +∞

Q0(q)
ydFY ∗

0 |S0=1,R=r0,C(y)
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= E
[
Y ∗
1 |S1= 1,R = r0,C

]
− 1

1 − q
E
[
1
(
Y ∗
0 ≥ Q0 (q)

)
Y ∗
0 |S0= 1,R = r0,C

]
, and

Um ≡ E
[
Y ∗
1 |S1= 1,R = r0,C

]
− 1

1 − q

∫ Q0(1−q)

−∞
ydFY ∗

0 |S0=1,R=r0,C(y)

= E
[
Y ∗
1 |S1= 1,R = r0,C

]
− 1

1 − q
E
[
1
(
Y ∗
0 ≤ Q0 (1 − q)

)
Y ∗
0 |S0= 1,R = r0,C

]
,

All the terms are identified by Theorem 1 and Lemma 1.

Conditional means in the first terms of the lower and upper
bounds can be identified by Equation (1) of Theorem 1, set-
ting g(Y ∗) = Y ∗ for t = 1, while those in the second terms can
be identified by setting g(Y ∗) = 1(Y ∗ ≥ Q0(q))Y ∗ or g(Y ∗) =
1(Y ∗≤ Q0(1 − q))Y ∗ for t = 0.
The above bounds fall in the class of “worst-case” bounds

by Horowitz and Manski (1995) and hence are sharp by
their Proposition 4. That is, Lm (Um) is the largest (smallest)
lower (upper) bound for E[Y ∗

1 − Y ∗
0 |S1= 1, S0 = 1,R = r0,C]

that is consistent with the observed data. Neither exclu-
sion restriction nor bounded support of the outcome is
required for these bounds. In contrast, the bounds proposed
by Horowitz and Manski (2000) require that the support
of the outcome is bounded so one can impute the miss-
ing data with either the largest or the smallest possible
values.
Theorem 2 provides bounds on the treatment effect for the

always participating compliers. The quitting compliers partic-
ipate only under no treatment. Without making any assump-
tions on their counterfactual outcomes under treatment, bounds
can be constructed only for their potential outcome under no
treatment E[Y ∗

0 |S1= 0, S0 = 1,R = r0,C]. The upper bound
is 1

qE[1(Y
∗
0 ≥ Q0(1 − q))Y ∗

0 |S0= 1,R = r0,C], and the lower

bound is 1
qE[1(Y

∗
0 ≤ Q0(q))Y ∗

0 |S0= 1,R = r0,C].
In addition, Theorem 2 assumes that S0 ≥ S1 holds almost

surely. If instead S1 ≥ S0 holds almost surely, then Lm
′ ≤

E[Y ∗
1 − Y ∗

0 |S1= 1, S0 = 1,R = r0,C] ≤ Um′
, where

Lm
′ ≡ 1

1 − q
E
[
1
(
Y ∗
1 ≤ Q1(1 − q)

)
Y ∗
1 |S1= 1,R = r0,C

]
−E

[
Y ∗
0 |S0= 1,R = r0,C

]
, and

Um′ ≡ 1

1 − q
E
[
1
(
Y ∗
1 ≥ Q1 (q)

)
Y ∗
1 |S1= 1,R = r0,C

]
−E

[
Y ∗
0 |S0= 1,R = r0,C

]
.

The bounds in Theorem 2 can be conveniently estimated by
the following steps.

Step 1: Estimate E[Y1|S1= 1,R = r0,C] by the standard fuzzy
RD estimator, usingY ∗ST as the outcome and ST as the
treatment.

Step 2: Estimate q by the standard fuzzy RD estimator, using S
as the outcome and S(1 − T ) as the treatment. Denote
the estimate as q̂.

Step 3: Estimate FY ∗
0 |S0=1,R=r0,C(y) by the standard fuzzy RD

estimator, using 1(Y ∗ ≤ y)S(1 − T ) as the outcome and
S(1 − T ) as the treatment. Then inverting the estimated
distribution to get the quantiles Q̂0(q̂) and Q̂0(1 − q̂).9

Step 4: Estimate E[1(Y ∗
0 ≤ Q0(1 − q))Y ∗

0 |S0= 1,R = r0,C]
and E[1(Y ∗

0 ≥ Q0(q))Y ∗
0 |S0= 1,R = r0,C] by the

standard fuzzy RD estimators, using S(1 − T ) as
the treatment and 1(Y ∗≤Q̂0(1 − q̂))Y ∗S(1 − T )
and 1(Y ∗≥Q̂0(q̂))Y ∗S(1 − T ), respectively, as the
outcomes.

Step 5: Construct bounds by replacing each term involved in
Theorem 2 with their estimates from Steps 1 to 4.

By construction, the lower and upper bounds are ordered,
that is, Lm ≤ Um, so confidence intervals for the true parameter
can be constructed following Imbens and Manski (2004),
using bootstrapped standard errors. Such confidence inter-
vals are valid by Lemma 3 of Stoye (2009), and by noticing
that estmators of the proposed bounds are smooth func-
tions of asymptotically normal estimators in Steps 1 to 4
(Calonico, Cattaneo and Titiunik 2014; Frandsen, Frölich,
and Melly 2012). If desired, one can also construct con-
fidence intervals for the entire identification region, for
example, by bootstrap, following Horowitz and Manski
(2000).

3.2 Subgroup Characteristics and Testable Implications
of Monotonic Selection

Monotonic selection stated in Assumption 2 plays an impor-
tant role in obtaining the sharp bounds in Theorem 2. By block-
ing sample selection in one direction, this assumption also per-
mits point identification of each subgroup characteristics among
compliers. Identifying subgroup characteristics provides impor-
tant information regarding what types of individuals are more
likely to quit (or participate) when they are under treatment. For
example, in our empirical application, it is of policy interest to
determine what types of students would quit if placed on aca-
demic probation.
Identifying subgroup characteristics also leads to the oppor-

tunity of verifying the monotonic selection assumption. Under
Assumption 2, the identified probability distribution of charac-
teristics for the quitting compliers should be bounded between
0 and 1. Otherwise, what is identified is a weighted difference in
the probability distribution of characteristics between the quit-
ting compliers and the newly participating compliers, and hence
could lie outside of the interval [0, 1].
Let X with a support X ⊆ R be some pre-determined covari-

ate other than the running variable. Following Theorem 1,
immediately we have the following corollary.

9In practice, these quantiles can be conveniently estimated by using the RD
quantile treatment effect estimator proposed by Frandsen, Frölich, and Melly
(2012), after replacing T with ST and (1 − T ) with S(1 − T ) to deal with sample
selection.
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Corollary 1. Assume that A1 and A2 hold. Assume fur-
ther that A3 holds after replacing Y ∗

t with X . Then for
t = 0, 1,

(8)

FX |St=1,R=r0,C(x) = limr↓r0 E [1 (X ≤ x) 1 (T = t ) S|R = r] − limr↑r0 E [1 (X ≤ x) 1 (T = t ) S|R = r]

limr↓r0 E [1 (T = t ) S|R = r] − limr↑r0 E [1 (T = t ) S|R = r]
.

Analogous to Equations (4) and (5), the above identified dis-
tributions can be decomposed as follows.

Corollary 2. Assume that A1 and A2 hold. Assume further
that A3 holds after replacing Y ∗

t with X . Given Assumption 2,

FX |S1=1,S0=1,R=r0,C(x) = FX |S1=1,R=r0,C(x), and (9)

FX |S1=0,S0=1,R=r0,C(x) = 1

q
FX |S0=1,R=r0,C(x)

− 1 − q

q
FX |S1=1,R=r0,C(x), (10)

where q is identified by Lemma 1, and FX |St=1,R=r0,C(x), t = 0, 1
is identified by Corollary 1.

Equation (9) identifies the distribution of covariates for the
always participating compliers, while Equation (10) identifies
that for the quitting compliers. Assumption 2 implies

1 ≥ 1

q
FX |S0=1,R=r0,C(x) − 1 − q

q
FX |S1=1,R=r0,C(x) ≥ 0 for all x ∈ X .

(11)
Equation (11) along with the inequality E[S1 −

S0|R = r0,C] < 0 under Assumption 2 can be easily tested
by one-sided t tests. Equation (11) therefore provides a practi-
cal way of verifying the plausibility of monotonic selection in
Assumption 2.
Kitigawa (2015) proposed a similar test for the LATE

assumption of Imbens and Angrist (1994). Kitigawa’s (2015)
test uses the fact that given monotonicity along with the other
LATE assumptions, the identified probability density distribu-
tions of potential outcomes for compliers should be nonnega-
tive. Here we test covariates. Typically binary covariates, such
as gender, race, or ethnicity indicators are available. The pro-
posed tests can then be implemented by simply testing that the
identified probabilities of these binary covariates for the quitting
compliers are between 0 and 1.
If instead assuming S1 ≥ S0, one can analygously identify

characteristics of the always participating compliers and newly
participating compliers. That is,

FX |S1=0,S0=1,R=r0,C(x) = E
[
1 (X ≤ x) |S0= 1,R = r0,C

]
, and

FX |S1=1,S0=1,R=r0,C(x) = 1

q
E
[
1 (X ≤ x) |S1= 1,R = r0,C

]

− 1 − q

q
E
[
1 (X ≤ x) |S0= 1,R = r0,C

]
.

3.3 Bounds Under Stochastic Dominance

When monotonic sample selection is not plausible, it is
necessary to rely on alternative assumptions to construct
bounds. This section provides sharp bounds for E[Y ∗

1 −
Y ∗
0 |S1= 1, S0 = 1,R = r0,C] under a different assumption than
Assumption 2.

Assumption 3. (Stochastic Dominance): FY ∗
1 |S0=1, S1 = 1,

R = r0,C(y) ≤ FY ∗
1 |S0=0,S1=1,R=r0,C(y) and FY ∗

0 |S0=1, S1 = 1,
R = r0,C(y) ≤ FY ∗

0 |S0=1,S1=0,R=r0,C(y) for any y ∈ Y .

Assumption 3 requires that the distribution of potential
outcome Y ∗

1 (Y ∗
0 ) for those always participating compli-

ers weakly stochastically dominates that of newly partic-
ipating (quitting) compliers. This assumption is plausible
when those who participate regardless of treatment states
have better outcomes than those who are induced to par-
ticipate only in one treatment state (Blanco, Flores, and
Flores-Lagunes 2013; Chen and Flores 2014). Only mean
dominance, E[Y ∗

1 |S0 = 1, S1= 1,R = r0,C] ≥ E[Y ∗
1 |S0 =

0, S1= 1,R = r0,C] and E[Y ∗
0 |S0 = 1, S1= 1,R = r0,C] ≥

E[Y ∗
0 |S0 = 1, S1= 0,R = r0,C], is needed to derive sharp

bounds on the average treatment effect of the always participat-
ing compliers. We impose a stronger assumption to also derive
sharp bounds for the corresponding quantile treatment effects
(provided in Online Supplemental Appendix I).

Theorem 3. Assume that p0 + p1 > 1. If Assumptions 1 and
3 hold, then
Ls ≤ E[Y ∗

1 − Y ∗
0 |S1= 1, S0 = 1,R = r0,C] ≤ Us, where

Ls ≡ E
[
Y ∗
1 |S1= 1,R = r0,C

]− p0
p0 + p1 − 1

E

×
[
1

(
Y ∗
0 ≥ Q0

(
1 − p1
p0

))
Y ∗
0 |S0= 1,R = r0,C

]
, and

Us ≡ p1
p0 + p1 − 1

E

[
1

(
Y ∗
1 ≥ Q1

(
1 − p0
p1

))

× Y ∗
1 |S1= 1,R = r0,C

]
− E

[
Y ∗
0 |S0= 1,R = r0,C

]
.

all the terms are identified by Theorem 1.

pt , t = 0, 1 can be identified by Equation (2) of
Theorem 1. Conditional means in the first terms of the lower
or upper bounds can be identified by Equation (1), setting
g(Y ∗) = Y ∗ or g(Y ∗) = 1(Y ∗≥ Q1(

1−p0
p1

))Y ∗ for t = 1, while
those in the second terms can also be identified by Equation (1),
setting g(Y ∗) = 1(Y ∗ ≥ Q0(

1−p1
p0

))Y ∗ or g(Y ∗) = Y ∗ for t = 0.
Estimation and construction of confidence intervals follow
analogously to those discussed in Section 3.1.
Finally, note that Assumptions 2 and 3 may be changed

and combined, depending on their plausibility in a particular
empirical application. For example, if both Assumptions 2 and
3 hold in addition to Assumption 1, then the sharp bounds in
Theorem 2 can be tightened. In particular, stochastic dominance
in Assumption 3 implies that E[Y ∗

0 |S1= 1, S0= 1,R = r0,C] ≥
E[Y ∗

0 |S0= 1,R = r0,C], while E[Y ∗
0 |S0= 1,R = r0,C] ≥

1
1−qE[1(Y

∗
0 ≤ Q0(1 − q))Y ∗

0 |S0= 1,R = r0,C]. The lower

bound is then Lms ≡ E[Y ∗
1 |S1= 1,R = r0,C] − 1

1−qE[1(Y
∗
0 ≥

Q0(q))Y ∗
0 |S0= 1,R = r0,C], and the upper bound is Ums ≡

E[Y ∗
1 |S1= 1,R = r0,C] − E[Y ∗

0 |S0= 1,R = r0,C] . That is, the
extensive margin is the upper bound in this case.
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4. EMPIRICAL APPLICATION: ACADEMIC
PROBATION AND GENDER DIFFERENCES IN

RESPONSES

This section applies the proposed approach to evaluate the
impacts of academic probation. Nearly all colleges and univer-
sities in the US adopt academic probation to motivate students
to stay above a certain performance standard. Surprisingly lit-
tle empirical evidence exists on how this popular policy affects
students’ outcomes.
Typically students are placed on academic probation if their

GPAs fall below a certain threshold. Students on probation
face the real threat of being suspended if their performance
continues to fall below the required standard. In a seminal
study, Lindo, Sanders, and Oreopoulos (2010) examined the
effects of academic probation using data from a large Canadian
university. Fletcher and Tokmouline (2010) performed similar
analysis using the US data. Both studies adopt the standard
sharp RD design to evaluate the effects of the first-year (or
first-term) probation. They show that placement on academic
probation discourages some students from continuing in school
while motivating others to perform better. That is, academic
probation simultaneously increases the dropout probability yet
improves the performance of those non-dropouts.
Here, we investigate the effects of being ever placed on aca-

demic probation in college. Correctly evaluating the overall
effects of academic probation requires dealing with attrition that
differs right above and right below the probation threshold. We
also investigate what type of students are induced to drop out
when placed on probation. For example, although academic pro-
bation increases college attrition, it might be welfare improving
if those who drop out are low performing students who would
not gain much from staying in college anyways. Identifying the
characteristics of dropouts is possible given our identification
results on subgroup characteristics in Section 3.2.
Let Y ∗ be the cumulative GPA. Let S be a sample selection

indicator which is 1 if a student does not drop out and 0 oth-
erwise. Y ∗ is observed only if S = 1, that is, a student does
not drop out by the time their performance is measured. Our
main analysis focuses on the final GPAs of college graduates.
We additionally look at GPAs at the end of the first, second,
third, and fourth academic years. The treatment T is an indica-
tor of whether a student has ever been on probation. The run-
ning variable R is the first semester GPA. Fuzzy RD designs
are entailed, since students with the first semester GPA falling
just above the probation threshold may still fail and be placed
on probation later. One exception is when the outcome under
consideration is performance at the end of the first year (second
semester). In this case, probation is determined solely by the first
semester GPA falling below the probation threshold and hence
the RD design is sharp.
The analysis draws on confidential data from a large pub-

lic university in Texas. These data are collected under the
Texas Higher Education Opportunity Project (THEOP).10 An
undergraduate at this university is considered to be “scholasti-
cally deficient” if his or her GPA falls below 2.0. We do not

10Fletcher and Tokmouline (2010) also used the THEOP data, but all the data
used in this article are obtained and processed independently.

observe the actual probation status. The treatment T is set to be 1
as long as a student’s cumulative GPA is below the school-wide
cutoff 2.0, that is, when a student is considered to be “scholasti-
cally deficient.”11 The data represent the entire population of the
first-time freshmen cohorts between 1992 and 2002. Their col-
lege transcript information is available from 1992 to 2007. We
include in our sample all students for whom we have complete
records. The total sample size is 64,310.
Table 1 presents the sample summary statistics for the full

sample and the sample with the first semester GPA falling
between 1.5 and 2.5 (referred to as the close-to-cutoff sam-
ple).12 The sample size for final GPA ismuch smaller, indicating
serious sample selection or attrition. Compared with students
who have never been placed on probation, those ever on pro-
bation are much less likely to complete college, 44.4% lower
in the full sample or 30.4% lower in the close-to-cutoff sample.
Among students who compete college, those ever on probation
also have lower final GPAs, 0.627 lower for the full sample
and 0.243 lower for the close-to-cutoff sample. However,
these simple correlations do not represent the causal impacts
of academic probation, since students ever on probation are
expected to be poorer performers. For example, they have lower
SAT scores on average. They are also less likely to be ranked
among the top 25% of their high school classes and less likely
to be a member of National Honors Society (NHS). In addition,
students ever on probation are more likely to be male and
less likely to be White. All these differences are statistically
significant at the 1% level. The same general pattern holds true
for the close-to-cutoff sample, even though not surprisingly all
the differences are smaller. Still all but one of the differences,
the NHS membership, are statistically significant at the 1%
level for the close-to-cutoff sample.
Figure 1 plots the probabilities of probation conditional on the

first semester GPA for the full sample, women, and men sepa-
rately.13 For those whose first semester GPAs fall below the pro-
bation threshold, the probability of being on probation is 1 by
construction. This one-sided non-compliance implies no defiers,
and hence Assumption A2 holds by design. The estimated dis-
continuity in the probation probability at the cutoff is 59.3% for
the full sample, 66.3% for women, and 53.6% for men. These
estimates are statistically significant at the 1% level. Therefore,
Assumption A1 holds.
Now consider Assumption A3. There are no consistent tests

for A3. However, one can test its implications, smoothness of
the conditional means of pre-determined covariates and smooth-
ness of the density of the running variable. Figure 2(a) shows the
conditional means of some pre-determined covariates, including
SAT score, indicators for male, White, whether one is ranked
among the top 25% of the high school class, whether one is an
NHS member in high school, and whether one is from a feeder
school. Figure 2(b) presents the density of the first semester

11In practice, when a student is considered as scholastically deficient, he or she
may only be given an academic warning. However, a quick survey administered
to the relevant academic deans suggests that students are generally placed on
probation in this case.
12The close-to-cutoff sample is used to produce sample summary statistics and
figures only.
13All our figures are conveniently generated using the Stata command,
rdplot.ado. Details can be found in Calonico, Cattaneo, and Titiunik, (2015).
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Table 1. Sample descriptive statistics

Ever on probation Never on probation

N Mean (SD) N Mean (SD) Difference

I: Full sample

Final GPA 6,447 2.535 44,492 3.162 −0.627
(0.323) (0.439) (0.006)***

College completion 14,398 0.448 49,912 0.891 −0.444
(0.497) (0.311) (0.003)***

Male 14,398 0.579 49,912 0.461 0.117
(0.494) (0.499) (0.005)***

White 14,398 0.726 49,912 0.836 −0.110
(0.446) (0.370) (0.004)***

SAT score 14,369 1,112 49,825 1,182 −69.88
(129.8) (135.9) (1.274)***

Top 25% of HS class 14,398 0.689 49,912 0.832 −0.111
(0.359) (0.440) (0.003)***

HS NHS member 14,369 0.265 49,912 0.350 −0.085
(0.441) (0.477) (0.004)***

Feeder school 14,369 0.121 49,912 0.180 −0.059
(0.326) (0.384) (0.004)***

II: 1st semester GPA = 2.0 ± 0.5

Final GPA 4,607 2.565 7,901 2.808 −0.243
(0.324) (0.323) (0.006)***

College completion 8,512 0.541 9,351 0.845 −0.304
(0.498) (0.362) (0.006)***

Male 8,512 0.565 9,357 0.465 0.100
(0.496) (0.499) (0.007)***

White 8,512 0.746 9,351 0.806 −0.059
(0.435) (0.396) (0.006)***

SAT score 8,497 1,111 9,336 1,124 −12.43
(127.2) (120.4) (1.855)***

Top 25% of HS class 8,512 0.706 9,351 0.778 −0.073
(0.456) (0.415) (0.007)***

HS NHS member 8,512 0.265 9,351 0.273 −0.008
(0.442) (0.446) (0.007)

Feeder school 8,512 0.124 9,351 0.147 −0.023
(0.330) (0.354) (0.005)***

GPA.14 No noticeable differences are observed in the average
values of the covariates or in the density of the running variable
at the probation threshold. More formally, we perform falsifi-
cation tests, that is, test the impacts of academic probation on
these covariates. We also test the discontinuity in the density of
the running variable at the RD cutoff (McCrary 2008; Cattaneo,
Jansson, and Ma 2016). Results from these tests are reported in
Table 2. None of the estimates are statistically significant, sup-
porting the validity of the research design here.
We then estimate the extensive and intensive margin effects

based on Theorem 1. Figure 3 visualizes the probability of com-
pleting college (top row) and the final mean GPA (bottom row)
given the first semester GPA.Womenwhose first semester GPAs
fall just below 2.0 are much less likely to complete college than

14Students whose first semester GPAs are exactly 2.0 are not included in our
sample, considering possible rounding at this value. We assume that observa-
tions away from 2.0 are correctly measured.

those whose GPAs fall just above. In sharp contrast, for men
the probability of completing college does not differ much just
above and just below the probation threshold. Note that in the
bottom row of Figure 3, any discontinuities (or lack of discon-
tinuities) in the observed GPA at the probation threshold can

Table 2. RD validity tests

I: RD effects of Academic Probation on Covariates
Male 0.032 (0.045) Top 25% of HS Class − 0.040 (0.036)
White 0.005 (0.038) HS NHS member − 0.006 (0.033)
SAT score 0.158 (12.87) Feeder school 0.025 (0.025)

II: Discontinuity in the Density of Running Variable
0.115 (0.600) 0.047 (0.041)

Note: In Panel I, the CCT bias-corrected estimates along with robust standard errors are
reported. In Panel II, the first column reports the estimated discontinuity in logarithm of
the empirical density of the running variable (with a bin width 0.01); the second column
reports the estimated discontinuity by the nonparametric density estimator of Cattaneo,
Jansson, and Ma (2016).



10 Journal of Business & Economic Statistics, XXXX 2017

Figure 1. Probability of ever placement on probation and the first semester GPA (centered at 2.0).

Figure 2(a). Conditional means of covariates conditional on first semester GPA.

Figure 2b. Empirical density of the running variable (first semester
GPA).

result from either changes in sample selection or real changes
in the performance of those non-dropouts.
Table 3 presents the main results.15 The top panel of Table 3

reports the estimated extensive and intensive margin effects. For
comparison purposes, the middle panel of Table 3 presents the
estimated LATEs by the standard RD design. The bottom panel
presents the estimated bounds on the probation effect of those
always participating compliers. Discussion on these bounds is
deferred until later. The probability for women to complete col-
lege is estimated to decrease by 18.2% if they have ever been
placed on academic probation. This estimate is statistically sig-
nificant at the 1% level. In sharp contrast, probation is estimated
to have a small, positive, yet insignificant impact (5.6% with

15For notational convenience, in all the tables, I dropC and R = r0 in the condi-
tioning set. Nevertheless, all estimates are among the compliers at the probation
threshold.



Dong: Regression Discontinuity Designs With Sample Selection 11

Table 3. Effects of academic probation on college completion and final GPAs

Full sample Female Male

I: RDD with sample selection

(1):Pr (S0 = 1) 0.824 (0.018)
∗∗∗

0.834 (0.023)
∗∗∗

0.820 (0.025)
∗∗∗

(2):Pr (S1 = 1) 0.773 (0.039)
∗∗∗

0.659 (0.064)
∗∗∗

0.875 (0.080)
∗∗∗

Extensive margin: (2)-(1) − 0.051 (0.037) − 0.182 (0.068)
∗∗∗

0.057 (0.090)
(3): E(Y0|S0 = 1) 2.727 (0.016)

∗∗∗
2.768 (0.020)

∗∗∗
2.686 (0.022)

∗∗∗

(4): E(Y1|S1 = 1) 2.771 (0.026)
∗∗∗

2.837 (0.039)
∗∗∗

2.716 (0.036)
∗∗∗

Intensive margin: (4)-(3) 0.045 (0.036) 0.069 (0.050) 0.030 (0.050)
II: Standard RDD

0.029 (0.032) 0.049 (0.040) 0.047 (0.058)

III: Bounds for always participating compliers

Lower bound 1 − 0.011 (0.054) − 0.010 (0.099) 0.030 (0.060)
Upper bound 1 0.209 (0.098)

∗∗
0.148 (0.121) 0.030 (0.102)

90% CI 1 [− 0.080 0.336] [− 0.139 0.306] [− 0.068 0.198]
Lower bound 2 0.045 (0.036) 0.069 (0.050) 0.030 (0.052)
Upper bound 2 0.209 (0.098)

∗∗
0.148 (0.121) 0.030 (0.102)

90% CI 2 [− 0.002 0.336] [− 0.002 0.318] [− 0.055 0.198]
N 64,310 32,952 31,358

Notes: All estimates are conditional on compliers at the first semester GPA equal to 2.0; Estimation of the extensive and intensive margins, and the bounds follows the description in
Sections 2 and 3.1, respectively. The CCT bias-corrected robust inference is used; in Panel III, 1 refers to the bounds under the monotonic sample selection assumption, while 2 refers to
the bounds assuming additionally mean dominance, particularly E(Y0|S0 = 1, S1 = 0,C,R = r0 ) ≥ E(Y0|S0 = 1, S1 = 1,C,R = r0 ); Bootstrapped standard errors are in the parentheses;
Imbens and Manski’s (2004) CIs are reported; ∗∗∗significant at the 1% level, ∗∗significant at the 5% level, ∗significant at the 10% level.

a standard error 0.09) on men’s probability of completing col-
lege. The estimated effects at the intensive margin are small
and insignificant for both men and women, so academic pro-
bation does not seem to promote the ultimate performance of
college graduates. Note that by the standard RD design, the esti-
mated effects of academic probation on final GPAs are all small
and insignificant, hiding any significant changes at the extensive
margin.
To further investigate gender differences in response to place-

ment on probation, the top rows of Figures 4 and 5 show, respec-
tively, the probabilities for women and men to stay in college till
the end of the first, second, third, and fourth years. The bottom
rows show correspondingly their cumulative GPAs. These fig-
ures reveal remarkable gender differences. In Figure 4, women
who fall just below the (first-semester) probation threshold are
increasingly more likely to drop out over academic years. In
contrast, in Figure 5 the dropout probability for men in general
does not differ much on either side of the probation threshold in
all years. At the same time, the observed mean GPAs for men
are always higher to the left of the threshold than those to the
right. This visual evidence suggests that while women are more
likely to drop out once being placed on probation, men seem to
cope with this negative signal by improving their performance
to avoid being suspended.
Tables 4 reports the estimated impacts on college persistence

and the cumulative GPA for women. Consistent with the visual
evidence in Figure 4, estimates in Table 4 show that placement
on probation significantly reduces college persistence among
women. Almost all women finish the first year of college,
regardless of their probation status. The estimated impact
on the probability of completing the first year is −1.1% and
is not statistically significant. However, the probabilities of
completing the second, third, and fourth years are estimated

to decrease significantly by 11.7%, 16.2%, and 16.7%, respec-
tively.
Table 5 reports the estimated impacts for men. Placement on

probation has small and insignificant effects on their probabil-
ity of staying in college in all years, yet it has positive effects on
their observed college GPAs. The estimates range from 0.084
to 0.107 in the first three years and statistically significant. The
estimated effect is 0.113 (with a standard error 0.072) at the end
of the fourth year. These results suggest that men may temporar-
ily improve their performance once they are on probation. No
significant improvement is found in their final GPA by the time
they complete college. Finally, it is worth noting that for men the
standard RD design yields significant estimates that are largely
similar to those estimated intensive margin effects. This is what
one would expect when there are no significant changes at the
extensive margin, or in the dropout probability for men in this
case.
Do relatively low ability women drop out once they are

placed on probation? This would be plausible if they form
rational expectations and make optimal decisions based on
their potential gains from staying in college. Table 6 reports
the estimated average characteristics of those quitting and
always participating compliers among women. Quitters are
more likely to be White. They have slightly higher SAT scores
on average. Note that SAT score is significantly positively
correlated with college final GPA in our sample. For exam-
ple, SAT score alone explains over 17% of the total sam-
ple variation in college final GPA among women. In addi-
tion, quitters are more likely to be ranked among the top
25% of their high school classes. Interestingly, quitters seem
to be less likely from a feeder school, suggesting that they
may have fewer high-school peers with whom they can share
information.
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Figure 3. College completion and final GPAs against first semester GPA.

Figure 4. College persistence and GPAs for women.
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Figure 5. College persistence and GPAs for men.

Overall estimates in Table 6 do not suggest that those quit-
ters have lower ability compared with the always participating
compliers. Quitter characteristics are all estimated to carry the
plausible positive sign. It is easy to test that the estimated proba-
bilities are not negative or greater than 1, so monotonic selection
is plausible. Assume that those quitters on average would per-
form at least the same as the always participants, had they not
drop out, that is, E[Y0|S0 = 1, S1 = 0,C,R = r0] ≥ E[Y0|S0 =
1, S1 = 1,C,R = r0]. This is a mean dominance in the opposite
direction than that implied by Assumption 3. Then analogous
to the discussion at the end of Section 3.3, the upper bound
on the intensive margin effect is E[Y ∗

1 |S1= 1,R = r0,C] −
1

1−qE[1(Y
∗
0 ≤ Q0(1 − q))Y ∗

0 |S0= 1,R = r0,C], while the lower
bound is E[Y ∗

1 |S1= 1,R = r0,C] − E[Y ∗
0 |S0= 1,R = r0,C].

That is, the intensive margin serves as a lower bound for the true
probation effect among those always participating compliers.
The bottom panels of Tables 3–5 report estimates of the

bounds under monotonic selection and the above bounds under
additionally the mean dominance E[Y0|S0 = 1, S1 = 0,C,R =
r0] ≥ E[Y0|S0 = 1, S1 = 1,C,R = r0]. Imbens and Manski’s
(2004) confidence intervals are reported, sincewhat is of interest
is the confidence interval for the true parameter, not that for the
identification region. Adding the mean dominance assumption
in general tightens the estimated bounds. The estimated inten-
sive margin effects, or the lower bounds on the true probation
effect for those always participating compliers, are small yet
insignificant for women. At the same time, the lower ends of the
90%CIs for women are slightly below zero. That is, althoughwe
can rule out large negative impacts of placement on probation,

there do not seem to be significant gains on average for women.
For men, the probation effects are bounded above zero for the
first three years. The lower end of the 90% confidence interval is
slightly below zero in the fourth year and moves further below
zero by the time they graduate. These results confirm again that
men seem to temporarily improve their GPAs once they are on
probation.
In Online Supplemental Appendix II, we report additional

results for students who are ranked among the top 25% of their
high school classes and those who are not. These additional
results are consistent with a discouragement effect of placement
on academic probation. In particular, those in the top quarter
of their high school classes are more likely to be discouraged
and hence to drop out once on probation. The impacts on the
dropout rates are large (8.7%–11.6%) and statistically signifi-
cant from the second academic year onward. In contrast, place-
ment on probation has mostly positive yet insignificant impacts
on college persistence among those who are not in the 25% of
their high school classes. In addition, the estimated intensive
margin effects are all positive. We can therefore rule out signif-
icant negative impacts of probation on GPAs, even though any
positive effects might be small.
These empirical results reveal striking gender differences

in response to placement on academic probation. College
probation discourages women from completing college. The
discouragement effect is particularly pronounced among those
who perform relatively better in high school. Intuitively, place-
ment on probation is likely to be a greater negative information
shock for them. In contrast, men in general are not discouraged
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Table 4. Effects on college persistence and GPAs (Women)

1st year 2nd year 3rd year 4th year

I: RDD with sample selection

(1):Pr(S0 = 1) 0.974 0.898 0.848 0.801
(0.005)

∗∗∗
(0.019)

∗∗∗
(0.023)

∗∗∗
(0.029)

∗∗∗

(2):Pr(S1 = 1) 0.956 0.779 0.686 0.641
(0.015)

∗∗∗
(0.049)

∗∗∗
(0.065)

∗∗∗
(0.070)

∗∗∗

Extensive margin: (2)-(1) −0.011 −0.117 −0.162 −0.167
(0.017) (0.052)

∗∗
(0.071)

∗∗
(0.073)

∗∗

(3): E(Y0|S0 = 1) 2.149 2.480 2.608 2.683
(0.011)

∗∗∗
(0.017)

∗∗∗
(0.018)

∗∗∗
(0.023)

∗∗∗

(4): E(Y1|S1 = 1) 2.125 2.529 2.636 2.775
(0.027)

∗∗∗
(0.035)

∗∗∗
(0.040)

∗∗∗
(0.056)

∗∗∗

Intensive margin: (4) and (3) −0.024 0.049 0.029 0.092
(0.042) (0.050) (0.070) (0.073)

II: Standard RDD

0.033 0.039 0.012 0.106
(0.023) (0.039) (0.042) (0.042)

∗∗

III: Bounds for always participating compliers

Lower bound 1 −0.024 −0.092 −0.228 −0.098
(0.050) (0.088) (0.121)

∗
(0.101)

Upper bound 1 0.080 0.066 0.229 0.108
(0.069) (0.147) (0.183) (0.104)

90% CI 1 [−0.024 0.080] [−0.209 0.262] [−0.341 0.418] [−0.229 0.242]
lower bound 2 −0.024 0.049 0.029 0.092

(0.042) (0.050) (0.070) (0.073)
Upper bound 2 0.080 0.066 0.229 0.108

(0.069) (0.147) (0.183) (0.104)
90% CI 2 [−0.079 0.169] [−0.031 0.300] [−0.063 0.421] [−0.008 0.272]
N 51,374 51,115 48,128 40,921

Notes: All estimates are conditional on compliers at the first semester GPA equal to 2.0; estimation of the extensive and intensive margins, and the bounds follows the description in
Sections 2 and 3.1, respectively. The CCT bias-corrected robust inference is used; In Panel III, 1 refers to the bounds under the monotonic sample selection assumption, while 2 refers to
the bounds assuming additionally mean dominance, particularly E(Y0|S0 = 1, S1 = 0,C,R = r0 ) ≥ E(Y0|S0 = 1, S1 = 1,C,R = r0 ); Bootstrapped standard errors are in the parentheses;
Imbens and Manski’s (2004) CIs are reported; ∗∗∗significant at the 1% level, ∗∗significant at the 5% level, ∗significant at the 10% level.

by this negative signal on performance. Instead men tem-
porarily improve their GPAs to avoid being suspended. These
findings strongly suggest that, to make academic probation
more beneficial, universities and colleges should take into
account the discouragement effects, particularly for women.
It is worth mentioning that our findings of the gender dif-

ferences differ from those documented by Lindo, Sanders, and
Oreopoulos (2010). In particular, they showed that the dropout
rate amongmen almost doubles when placed on probation while
that among women has no significant changes. The differen-
tial findings could be due to different data (Canadian vs. U.S.
school data) or different policy implementation. For example,
students generally receive a notice about their probation sta-
tus. Different universities may communicate the message differ-
ently. In addition, different universities impose different rules or
restrictions for students who are on probation. They may also
offer different services to assist these students. These variations
may lead to different impacts on students. It is therefore of great
policy interest to perform further analysis using more detailed
data to investigate students’ responses to this negative signal on
performance.

5. CONCLUSION

This article discusses identification of treatment effects
in RD designs when differential sample selection leads to
incomparability of observations near the RD threshold. Sample
selection or missing outcomes can frequently arise due to
dropout, survey nonresponse, censoring, or many other reasons.
We deal with both treatment endogeneity and sample selec-

tion issues. Identification in this article does not require any
exclusion restrictions in the selection equation, nor does it
require specifying the selection mechanism. The proposed iden-
tification results can therefore be applied broadly. The key iden-
tifying assumption, smoothness of the conditional distribution
of potential outcomes and potential sample selection status, is
plausible under no sorting near the RD threshold. This type of
smoothness conditions are typically assumed even in the stan-
dard RD design. They also have readily testable implications
and can be easily verified.
This article first provides nonparametric identification of

the extensive and intensive margin effects of the treatment.
This article then constructs sharp bounds on the treatment
effect among a well-defined subgroup of compliers, namely
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Table 5. Effects on college persistence and GPAs (Men)

1st year 2nd year 3rd year 4th year

I: RDD with sample selection

(1):Pr (S0 = 1) 0.973 0.925 0.872 0.809
(0.005)

∗∗∗
(0.017)

∗∗∗
(0.022)

∗∗∗
(0.027)

∗∗∗

(2):Pr (S1 = 1) 0.975 0.856 0.872 0.847
(0.015)

∗∗∗
(0.047)

∗∗∗
(0.056)

∗∗∗
(0.066)

∗∗∗

Extensive margin: (2)-(1) 0.000 −0.063 −0.008 0.036
(0.017) (0.050) (0.065) (0.078)

(3): E(Y0|S0 = 1) 2.108 2.416 2.517 2.597
(0.014)

∗∗∗
(0.018)

∗∗∗
(0.021)

∗∗∗
(0.026)

∗∗∗

(4): E(Y1|S1 = 1) 2.192 2.523 2.611 2.710
(0.024)

∗∗∗
(0.039)

∗∗∗
(0.038)

∗∗∗
(0.043)

∗∗∗

Intensive margin: (4)-(3) 0.084 0.107 0.094 0.113
(0.027)

∗∗∗
(0.054)

∗∗∗
(0.054)

∗
(0.072)

II: Standard RDD

0.078 0.103 0.098 0.142
(0.025)

∗∗∗
(0.046)

∗∗
(0.049)

∗∗
(0.064)

∗∗

III: Bounds for always participating compliers

Lower bound 1 0.084 0.041 0.094 0.113
(0.029) (0.095) (0.074) (0.079)

Upper bound 1 0.084 0.188 0.094 0.113
(0.088) (0.138) (0.142) (0.194)

90% CI 1 [0.037 0.230] [−0.086 0.371] [−0.028 0.327] [−0.017 0.429]
Lower bound 2 0.084 0.107 0.094 0.113

(0.027) (0.054) (0.054) (0.072)
Upper bound 2 0.084 0.188 0.094 0.113

(0.088) (0.138) (0.142) (0.194)
90% CI 2 [0.039 0.230] [0.030 0.384] [0.006 0.327] [−0.006 0.429]
N 51,374 51,115 48,128 40,921

Notes: All estimates are conditional on compliers at the first semester GPA equal to 2.0; estimation of the extensive and intensive margins, and the bounds follow the description in
Sections 2 and 3.1, respectively. The CCT bias-corrected robust inference is used; in Panel III, 1 refers to the bounds under the monotonic sample selection assumption, while 2 refers to
the bounds assuming additionally mean dominance, particularly E(Y0|S0 = 1, S1 = 0,C,R = r0 ) ≥ E(Y0|S0 = 1, S1 = 1,C,R = r0 ); Bootstrapped standard errors are in the parentheses;
Imbens and Manski’s (2004) CIs are reported; ∗∗∗significant at the 1% level, ∗∗significant at the 5% level, ∗significant at the 10% level.

Table 6. Mean characteristics of subgroups of compliers

Always participants Quitters

White 0.781 (0.067)
∗∗∗

0.893 (0.374)
∗∗

SAT score 1,093 (14.19)
∗∗∗

1,112 (106.4)
∗∗∗

Top 25% of HS class 0.774 (0.068)
∗∗∗

0.948 (0.460)
∗∗

HS NHS 0.268 (0.059)
∗∗∗

0.346 (0.450)
Feeder school 0.172 (0.055)

∗∗∗
0.005 (0.419)

Notes: Estimates are based on the sample of women; NHS means National Honors Society
member; the CCT bias-corrected estimates are reported; bootstrapped standard errors are
in the parentheses; ∗∗∗significant at the 1% level, ∗∗significant at the 5% level, ∗significant
at the 10% level.

those always participating compliers. Further discussed is
point identification of each subgroup characteristics among
compliers.
Applying these identification results, we evaluate impacts of

college probation and provide empirical evidence that is differ-
ent from that by the standard RD design. We show that there
are striking gender differences at the extensive versus the inten-
sive margin in response to placement on probation in college.
The probability for women to complete college decreases sig-
nificantly if they have ever been placed on academic probation.

Contrary to what one might expect, low ability women are not
more likely to drop out. Instead those who are in the top per-
centiles of their high school classes are more likely to drop out
once on probation. In contrast, placement on probation has little
impacts on men’s probability of dropping out of college. Men
seem to cope with probation by temporarily improving their
GPAs to avoid being suspended.
For simplicity, this article does not deal with covariates

other than the running variable in developing theory and in
the empirical analysis. The standard argument for RD designs
applies, that is, covariates are not needed for consistency but
may improve efficiency in estimating unconditional treatment
effects. If desired, one can easily incorporate covariates as addi-
tional control variables in the local linear or polynomial regres-
sions involved. In addition, this article deals with a single known
cutoff. In some empirical applications, multiple cutoffs exist.
For example, some colleges have floating probation thresh-
olds that depend on the number of credit hours taken. Multi-
ple cutoffs are also common in geographic RD designs (Keele
and Titiunik 2015). This article’s results can be applied by
normalizing all the thresholds to be zero, providing that all the
assumptions hold at each cutoff. Cattaneo et al. (2016) provided
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a detailed discussion on this approach in the standard RD design
and the interpretation of the identified treatment effects. See also
Bertanha (2016) for an alternative approach. We refer interested
readers to these papers and references therein.
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