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ABSTRACT

Regression discontinuity (RD) models are commonly used to nonpara-
metrically identify and estimate a local average treatment effect. Dong
and Lewbel (2015) show how a derivative of this effect, called treatment
effect derivative (TED) can be estimated. We argue here that TED
should be employed in most RD applications, as a way to assess the sta-
bility and hence external validity of RD estimates. Closely related to
TED, we define the complier probability derivative (CPD). Just as TED
measures stability of the treatment effect, the CPD measures stability of
the complier population in fuzzy designs. TED and CPD are numerically
trivial to estimate. We provide relevant Stata code, and apply it to some
real datasets.
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1. INTRODUCTION

Consider a standard regression discontinuity (RD) model, where T is a

binary treatment indicator, X is a so-called running or forcing variable, c is

the threshold for X at which the probability of treatment changes discontin-

uously, and Y is some observed outcome. The outcome may be affected

both by treatment and by X, though the conditional expectation of poten-

tial outcomes given X are assumed to be smooth functions of X. The goal

in these models is to estimate the effect of treatment T on the outcome Y ,

and the main result in this literature is that under weak conditions a local

average treatment effect (LATE) can be nonparametrically identified and

estimated at the point where X ¼ c (see, e.g., Hahn, Todd, & Van der

Klaauw, 2001).
The treatment effect identified by RD models only applies to a small

subpopulation, namely, people having X ¼ c. In fuzzy RD, the relevant

group is even more limited, being just people who both have X ¼ c and are

compliers. Compliers are defined to be people who have T ¼ 1 if X ≥ c and

have T ¼ 0 if X < c. Note that since a person can only have a single value of

X and of T , one of these defining conditions is a counterfactual statement,

and so we can never know exactly who are the compliers.
Given that the estimated RD treatment effect only applies to people hav-

ing X ¼ c, it is important to investigate the stability of RD estimates, that

is, to examine whether people with other values of X near c would have

expected treatment effects of similar sign and magnitude. If not, that is, if

ceteris paribus a small change in X away from c would greatly change the

average effect of treatment, then one would have serious doubts about the

general usefulness and external validity of the estimates, since other con-

texts are likely to differ from the given one in even more substantial ways

than a marginal change in X.
In this chapter, we argue that an estimator proposed by Dong and

Lewbel (2015) called the TED, for treatment effect derivative, can be used
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to assess the stability of RD LATE estimates. The TED therefore provides
a valuable tool for judging potential external validity of the RD LATE esti-
mator. Dong and Lewbel emphasize coupling TED with a local policy
invariance assumption, to evaluate how the RD LATE would change if the
threshold changed. In contrast, in this chapter we argue that, regardless of
whether the local policy invariance assumption holds or not, the TED pro-
vides valuable information regarding stability of RD estimates.

TED is basically the derivative of the RD treatment effect with respect
to the running variable. A more precise definition is provided below. We
argue that a value of TED that is statistically significant and large in mag-
nitude (see Section 5 for guidance on “how large is large”) is evidence of
instability and hence a potential lack of external validity. In contrast, hav-
ing TED near-zero provides some evidence supporting stability of RD
estimates.

We therefore suggest that one should estimate the TED in virtually all
RD applications, and see how far it is from zero as a way to assess the sta-
bility and hence external validity of RD estimates. In addition to TED, we
define a very closely related concept called the complier probability deriva-
tive, or CPD. Just as TED measures stability of the treatment effect, the
CPD measures stability of the population of compliers in fuzzy designs.

Both TED and CPD are numerically trivial to estimate. They can be
used to investigate external validity of the RD estimates, without requiring
any additional covariates (other than the running variable). We provide
easy to use Stata code to implement TED and CPD estimation, and apply
it to a couple of real datasets.

It is important to note that TED differs substantially from the regression
kink design (RKD) estimand of Card, Lee, Pei, and Weber (2015). The two
appear superficially similar, because TED equals the difference in deriva-
tives of a function around the threshold, and the estimate of a kink also
corresponds to a difference of derivatives of a function around the thresh-
old. However, RKD is the estimate of treatment effect given a continuous
treatment with a kink. TED does not involve a continuous treatment in
any way. TED applies when the treatment is binary, not continuous, and
TED is not the estimate of a treatment effect, rather, TED is a treatment
effect derivative.

TED is also not the same as the kink-based treatment effect estimator of
Dong (2016a). Dong (2016a) provides an estimate of a binary treatment
effect when the probability of a binary treatment (as a function of the run-
ning variable) contains a kink instead of a jump at the threshold. In con-
trast, TED assumes the standard RD jump in the probability of treatment
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at the threshold, and equals an estimate not of the treatment effect, but a

derivative of the treatment effect.
The next section provides a short literature review. This is followed by

sections describing TED for sharp designs, and both TED and CPD in

fuzzy designs. We then provide some empirical examples, reexamining two

published RD studies to see whether their RD estimates are likely to be

stable or not.

2. LITERATURE REVIEW

A number of assumptions are required for causal validity of RD treatment

effect estimates. Hahn et al. (2001) provide one formal list of assumptions,

though some of their assumptions can be relaxed as noted by Lee (2008)

and especially Dong (2016b). One such condition is Rubin’s (1978, 1980,

1990) “SUTVA,” which assumes that treatment of one set of individuals

does not affect the potential outcomes of others. Another restriction is that

potential outcomes, if they depend directly on X, are continuous functions

of X. This relaxes the usual Rubin (1990) unconfoundedness condition, and

so is one of the attractions of the RD method. In RD, one instead depends

on the “no manipulation” assumption, which is generally investigated using

the McCrary (2008) density and covariate smoothness tests.
One of the assumptions in Hahn et al. (2001) is a local independence

assumption. This assumption says that treatment effects are independent of

X in a neighborhood of the cutoff. Dong (2016b) shows that validity of RD

does not actually require this condition, and that it can be replaced by

some smoothness assumptions. Dong also shows that the local indepen-

dence assumption implies that TED equals zero. So one use for TED is to

test whether the local independence assumption holds.
Most tests of internal or external validity of treatment effect estimates

require covariates with certain properties. For example, one check of valid-

ity is the falsification test, which checks whether estimated treatment effects

equal zero when the RD estimator is applied after replacing the outcome Y

with predetermined covariates. Angrist and Fernandez-Val (2013) assess

external validity by investigating how LATE estimates vary across different

conditioning sets of covariates. Angrist and Rokkanen (2015) provide con-

ditions that allow RD treatment effects to be applied to individuals away

from the cutoff, to expand the population to which RD estimates can be

applied, and thereby increase external validity. Angrist and Rokkanen
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require local independence after conditioning on covariates. Wing and
Cook (2013) bring in an additional indicator of being an untreated group,

while Bertanha and Imbens (2014) look at conditioning on types. In con-
trast to all of these, a nice feature of TED is that it does not require any

covariates other than X.
More generally, identification and estimation of TED require no addi-

tional data or information beyond what is needed for standard RD models.

The only additional assumptions required to identify and estimate TED are
slightly stronger smoothness conditions than those needed for standard

RD, and these required differentiability assumptions are already imposed
in practice when one uses standard RD estimators such as local quadratic

regression.
TED focuses on changes in slope of the function E Y ∣Xð Þ around the

cutoff X ¼ c. Other papers that also examine or exploit slope changes in

RD models include Dong (2016a) and Calonico, Cattaneo, and Titiunik
(or CCT, 2014).

3. SHARP DESIGN TED

The intuition behind TED is simple. Let

Y ¼ g0 Xð Þ þ π Xð ÞT þ e;

where g0 Xð Þ is the average untreated outcome, given X, π xð Þ is the treatment
effect for compliers who have X ¼ x, and e is an error term that embodies
all heterogeneity across individuals. Let π0 xð Þ ¼ ∂π xð Þ=∂x. The treatment
effect estimated by RD designs is π cð Þ, and TED is just π0 cð Þ.

Let Z ¼ I X ≥ cð Þ, so Z equals one if the running variable is at or exceeds
the cutoff, and is zero otherwise. Sharp RD design has T ¼ Z, so Y ¼
g0 Xð Þ þ π Xð ÞZ þ e. By just looking at individuals in a small neighborhood
of c, we can approximate g0 Xð Þ and π Xð Þ with linear functions making

Y ≈ β1 þ Zβ2 þ X � cð Þβ3 þ X � cð ÞZβ4 þ e: ð1Þ

Local linear estimation with a uniform kernel consists precisely of
selecting only individuals who have X observations close to (within one
bandwidth of) c, and using just those people to obtain estimates bβ1, bβ2, bβ3,
and bβ4 in this regression by ordinary least squares (for local quadratic
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estimation, see below). Under the standard RD and local linear estimation
assumptions, shrinking the bandwidth at an appropriate rate as the sample
size grows, we get bβ2 →

pπ cð Þ and bβ4 →
pπ0 cð Þ (see Dong & Lewbel, 2015 for

details). As a result, bβ2 is the usual estimate of the RD treatment effect,
and bβ4 is the estimate of TED.

For any function h and small ε> 0, define the left and right limits of the

function h as

hþ xð Þ ¼ lim
ε→ 0

h xþ εð Þ and h� xð Þ ¼ lim
ε→ 0

h x� εð Þ:

Similarly, define the left and right derivatives of the function h as

h0þ xð Þ ¼ lim
ε→ 0

h xþ εð Þ � h xð Þ
ε

and h0� xð Þ ¼ lim
ε→ 0

h xð Þ � h x� εð Þ
ε

:

Let g xð Þ ¼ E Y ∣X ¼ xð Þ. Formally, the sharp RD design treatment effect is
defined by π cð Þ ¼ gþ cð Þ � g� cð Þ, and Dong and Lewbel (2015) show that
the sharp RD design TED, defined by π0 cð Þ, satisfies the equation
π0 cð Þ ¼ g0þ cð Þ � g0� cð Þ. The above-described local linear estimator is nothing
more than a nonparametric regression estimator of π cð Þ and its derivative
π0 cð Þ.

Local quadratic estimation just adds squared terms to Eq. (1). That is,

local quadratic regression adds X � cð Þ2β5 þ X � cð Þ2Zβ6 to the right side of

Eq. (1). But bβ2 will still be a consistent estimate of the treatment effect, and
bβ4 will still be a consistent estimate of the TED. Empirical applications also

often make use of nonuniform kernels. These correspond exactly to esti-

mating the above regression using weighted least squares instead of ordi-

nary least squares, where the weight of any observation i (given by the

choice of kernel) is a function of the distance ∣xi � c∣, with observations

closest to c getting the largest weight.

4. FUZZY DESIGN TED AND CPD

For fuzzy RD, where T is the treatment indicator and Z ¼ I X ≥ cð Þ is the

instrument, in addition to the outcome Eq. (1) we have the additional linear

approximating equation
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T ≈ α1 þ Zα2 þ X � cð Þα3 þ X � cð ÞZα4 þ u; ð2Þ

where u is an error term. Once again, this equation can be estimated by
ordinary least squares using only individuals who have X close to c, corre-
sponding to a uniform kernel, or by weighted least squares given a different
kernel. Equation (2) is a local linear approximation to r xð Þ ¼ E T ∣X ¼ xð Þ.
Since T is binary, this equals the probability of treatment for an individual
that has X ¼ x.

Define a complier as an individual for whom T and Z are the same ran-

dom variable, so a complier has T ¼ 1 if and only if he has Z ¼ 1.

Equivalently, a complier is treated if and only if his value of X is greater

than or equal to c. Let p xð Þ ¼ Pr T ¼ Z∣X ¼ xð Þ. Note that this is not the

probability that T ¼ Z ¼ 0, or that T ¼ Z ¼ 1, rather, this is the probability

that T and Z are the same random variable, conditional on X ¼ x. So p xð Þ
is the conditional probability that someone is a complier, conditioning on

that person having X ¼ x.
Let p0 xð Þ ¼ ∂p xð Þ=∂x. By the same logic as in sharp design estimation in

the previous section p cð Þ ¼ rþ cð Þ � r� cð Þ and p0 cð Þ ¼ r0þ cð Þ � r0� cð Þ. Under

standard assumptions for fuzzy RD design and local linear estimation, we

then have bα2 → pp cð Þ and bα4 → pp0 cð Þ. So bα4 is a consistent estimator of

what we will call the CPD.
Equation (2) is exactly the same as Eq. (1), replacing the outcome Y with

T , replacing g xð Þ with r xð Þ, and replacing the treatment effect π cð Þ with the

complier probability p cð Þ. So the exact same TED machinery as in the

sharp design can be applied to Eq. (2), and the CPD is then just the TED

when we replace Y with T. Also as before, for local quadratic estimation we

just add X � cð Þ2α5 þ X � cð Þ2Zα6 to Eq. (2), and doing so does not change

the consistency of bα2 and the CPD bα4.
Let q xð Þ ¼ E Y 1ð Þ∣X ¼ xð Þ � E Y 0ð Þ∣X ¼ xð Þ, so q cð Þ ¼ gþ cð Þ � g� cð Þ. The

standard fuzzy design treatment effect is given by πf cð Þ ¼ q cð Þ=p cð Þ, and so

is consistently estimated by

bπ f cð Þ ¼ bβ2=bα2:

Applying the formula for the derivative of a ratio,

π0f xð Þ ¼ ∂πf xð Þ
∂x

¼ ∂ q xð Þ=p xð Þ� �
∂x

¼ q0 xð Þ
p xð Þ �

q xð Þp0 xð Þ
p xð Þ2 ¼ q0 xð Þ � πf xð Þp0 xð Þ

p xð Þ : ð3Þ
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So, as shown by Dong and Lewbel (2015), the fuzzy design TED π0f cð Þ is
consistently estimated by

bπ 0
f cð Þ ¼

bβ4 � bπ f cð Þbα4

bα2

:

5. STABILITY

We can now see how the TED, π0 cð Þ, measures stability of the RD treat-
ment effect, since π cþ εð Þ ≈ π cð Þ þ επ0 cð Þ for small ε (A related expansion
appears in Dinardo and Lee (2011) in a different context, that of extrapo-
lating average treatment effects on the treated). If the TED is zero, then the
average treatment effect of an individual with x close to but not equal to c

will be π cþ εð Þ ≈ π cð Þ, indicating stability of the estimated effect. However,
if π0 cð Þ is large in magnitude, then people who are almost the same in every
way to those at the cutoff, differing only in having a marginally lower or
higher value of X, will have dramatically different treatment effects on aver-
age. A large value of TED therefore indicates instability.

The exact same logic applies also to fuzzy designs, with πf cþ εð Þ ≈
πf cð Þ þ επ0f cð Þ. However, in fuzzy designs there are two potential sources of

instability. As Eq. (3) shows when evaluated at x ¼ c, the fuzzy treatment
effect could be unstable because g0 cð Þ is far from zero, indicating a true
change in the effect on the average complier. Alternatively, the fuzzy treat-
ment effect could be unstable because p0 cð Þ is far from zero. This latter con-
dition is what the CPD tests. Like TED, the CPD is a measure of stability,
since having the CPD near zero suggests potential stability of the complier
population, whereas a large positive or negative value of the CPD says that
the population of compliers changes dramatically with small changes in X.
Note that in sharp design p cð Þ ¼ 1 and therefore p0 cð Þ ¼ 0. So the CPD is
always zero in sharp designs, and therefore only needs to be estimated in
fuzzy designs.

Additional support for TED as a stability measure comes indirectly
from Gelman and Imbens (2014). They argue that high-order local polyno-
mials should not be used for estimating RD models, because the resulting
estimates can be unstable. Unstable estimates from polynomial orders that
are too high will typically result in very different slope estimates above and
below the threshold, and hence a large estimated TED value.
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Either ∣π cð Þ=π0 cð Þ∣ or ∣πf cð Þ=π0f cð Þ∣ is approximately how large ε would

need to be to change the sign of the estimated treatment effect. The smaller

this value is, the more unstable is the RD LATE. Define the relative

TED as

sharp relative TED ¼ π cð Þ
π0 cð Þb

����
���� ¼

β2
β4b

����
����;

fuzzy relative TED ¼ πf cð Þ
π0f cð Þb

�����
����� ¼

α2β2
α2β4 � α4β2
� �

b

�����
�����;

ð4Þ

where b is the bandwidth used for estimation (meaning that the data used
for estimation have values of X in the range from c� b to cþ b). A relative
TED smaller than one implies that the treatment effect would change
sign for some subset of people in this range. A simple rule of thumb might
be that the RD LATE is unstable if TED is statistically significant and
if the relative TED is smaller than about one or two. The CPD cannot
change sign, but one might similarly be concerned about stability of the
complier population if CPD is significant and the relative CPD, given by
∣p cð Þ= p0 cð Þbð Þ∣ and estimated by ∣α2= α4bð Þ∣, were smaller than one.

It is important to note that instability does not mean that the RD esti-

mates are invalid, but rather that they need to be interpreted cautiously. In

contrast, a finding of stability (i.e., a small TED) suggests some external

validity, since it implies some other people, those away from but near the

cutoff, likely have treatment effects of similar magnitudes to those right at

the cutoff.

6. EMPIRICAL EXAMPLES

In this section, we provide empirical RD examples that illustrate: (i)

estimating LATE, TED and CPD; (ii) testing their significance, and

(iii) graphically visualizing the results. We show that the same representa-

tion typically used to graph the discontinuity of the outcome (and/or of

the probability) at the threshold can be readily extended to include the

TED, so one can simultaneously visualize both the magnitude of the treat-

ment effect (LATE) and its stability (TED and CPD). We present two

examples drawn from existing RD empirical literature, one using a sharp

design, and the other using a fuzzy design.
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6.1. Sharp RD Example

The first example we consider is from Haggag and Paci (2014). These
authors use a sharp RD design to examine the effect of suggested tip levels
offered by credit card machines on consumers’ actual tipping behavior,
based on data from around 13 million New York City taxi rides. The RD
design exploits different tip suggestions offered by the credit card machine
depending on whether the fare was above or below $15. For rides under
$15, tip suggestions are $2, $3, and $4, while for rides above $15 consumers
are presented with 20%, 25%, and 30% tip suggestions. At the $15 thresh-
old, the shift represents an increase in the suggested tip levels of approxi-
mately $1, $0.75, and $0.50, respectively. Haggag and Paci find that the
suggested tips have a large local treatment effect. They find that this dis-
continuous increase in suggested tip amounts yields an increase of
$0.27�0.30 in actual tips, which is more than a 10% increase in the average
tip at the $15 threshold.

Here, we use TED to investigate stability of this $0.27�0.30 treatment
effect. TED provides information on whether and how much this estimated
local treatment effect is likely to change for fares that are slightly higher or
lower than the $15 cut off. Treatment effects are estimated in two different
ways; either by measuring outcomes (tips) in terms of dollar amounts, or as
fractions of the total fare. The estimated RD LATE and TED are pre-
sented in Table 1. Columns 1 and 4 (RD1) correspond to the original speci-
fications used in Haggag and Paci (2014, Column 2 of Table 2, Column 1
of Table 3) which is a third-order local polynomial, with a bandwidth that
limits fares to be between $5 and $25, and controlling for driver fixed
effects, pickup day of the week, pickup hour, pickup location, and drop-off
location. We then also provide, and focus on, local quadratic regressions
(RD2 and RD3), using correspondingly smaller bandwidths (limiting fares
to be between $10 and $20 or between $12 and $18). We use local quadratic
regressions because, as noted by Porter (2003), lower than quadratic order
local polynomials suffer from boundary bias in RD estimation, while
Gelman and Imbens (2014) report that higher than quadratic order local
polynomials tend to be less accurate. In this application, the differences
across these different polynomials and different bandwidth choices are
rather small, probably because the sample size is large.

In Table 1, the estimated RD LATE for the tip amount (tips measured
in dollars) ranges from $0.274�0.287, and the TED estimates are
$0.052�0.061. These TED estimates are relatively large, suggesting that the
average impact of the treatment could be five or six cents higher or lower
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with just a dollar change in fares. Defining the tip outcome and associated

treatment effect in terms of percentage of the fare tells a similar story. The

estimated RD treatment effect for tip percentage is 1.816�2.025 percentage

points, meaning that the discontinuous jump in suggested tips (around the

$15 fare level) increased actual tips by about 2%. The associated TED esti-

mates are 0.204�0.589. This suggests that if the fare were 1% higher, the

RD LATE might increase from around 2% to anywhere from 2.204% to

2.589%. Whether the change in the treatment effect would actually be this

large if the threshold were actually increased depends on whether the local

policy invariance assumption holds in this context (see the next section for

details).
These TED estimates are all statistically significant. At the middle

bandwidth of 5, the estimated relative TED is 1.05 or 1.82, which is near

the borderline suggesting instability of the RD LATE estimates. The mag-

nitude of the TED here means there is a good chance that the magnitude of

the treatment effect could be quite different at somewhat lower or higher

values of the threshold.

Table 1. TED and Sharp RD Treatment Effects of Defaults on Tipping.

Tip Amount Tip Percent

RD1 RD2 RD3 RD1 RD2 RD3

RD LATE 0.276 0.274 0.287 2.025 1.861 1.816

(0.006)*** (0.008)*** (0.006)*** (0.038)*** (0.038)*** (0.050)***

TED 0.061 0.052 0.056 0.589 0.204 0.231

(0.006)*** (0.006)*** (0.013)*** (0.038)*** (0.038)*** (0.081)***

Bandwidth 10 5 3 10 5 3

N 6,218,196 2,246,689 1,184,411 6,218,196 2,246,689 1,184,411

Polynomial order 3 2 2 3 2 2

Notes: This table uses the data from Haggag and Paci (2014); The sample is limited to Vendor-

equipped cab rides without tolls, taxes, or surcharges; As in Haggag and Paci (2014), all speci-

fications include fixed effects for driver, pickup day of the week, pickup hour, pickup location

borough, and drop-off location borough; Columns 1 and 4 (RD1) are the original specifica-

tions used in Haggag and Paci (2014). Bandwidth equal to 10 corresponds to $5≤ fare≤ $25

(the original bandwidth used in Haggag & Paci, 2014); Bandwidth equal to 5 corresponds to

$10≤ fare≤ $20; Bandwidth equal to 3 corresponds to $12≤ fare≤ $18; Robust standard errors

clustered at each fare value ($0.40 intervals).
***Significant at the 1% level.
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This relatively large TED value (and the associated instability it implies)
can be seen in Fig. 1, which uses the tip percentage as the outcome variable.
The circles in this figure show cell means, and the curves are the fitted local
polynomials. Since this is a sharp design the left dark curve is an estimate
of E Y 1ð Þ ∣ Xð Þ and the right dark curve is an estimate of E Y 0ð Þ ∣ Xð Þ, where
Y tð Þ is the potential outcome given treatment t. As usual, the RD LATE
equals the gap between the left and right curves at the cutoff point. The
two straight lines in the figure show the estimated slopes of these local poly-
nomials evaluated at the cutoff. Since this is a sharp design, TED just
equals the difference in the slopes of these tangent lines. One can see from
the figure that the slope of the tangent lines decreases quite a bit from the
left to the right side of the threshold. As a result, if one extrapolated the
curve on the left a little to the right of the threshold, and evaluated the gap
between the curves at this new point (say, at 16 instead of 15), then this
new RD LATE would be around 2.3% instead of around 2%. This is the
instability that the TED measures.

To derive the RD LATE, Hahn et al. (2001) invoke a local independence
assumption. This assumption says that treatment effects are independent of
X in a neighborhood of the cutoff. As noted earlier, Dong (2016b) shows
that validity of RD does not actually require this condition, that it can be
replaced by some smoothness assumptions, and that the local independence

Fig. 1. Sharp RD Discontinuity in the Outcome Variable (Percentage Tips) and

Tangents Lines at Threshold. Source: Dataset from Haggag and Paci (2014). Note:

Each dot is the average within a discrete fare amount.
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assumption implies that TED equals zero. So in the present application,
our finding of a significantly nonzero TED means that this assumption is
violated.

All the TED estimates in this application are significantly different from
zero at the 1% significance level. Note that the sample size is very large in
this application. With very large samples, even a behaviorally tiny estimate
of TED could be statistically significant. This shows why it is important to
consider the magnitude of the estimated TED, and not just its statistical
significance, in judging stability.

6.2. Fuzzy RD Example

We now consider the fuzzy design RD model in Clark and Martorell (2010,
2014), which evaluates the signaling value of a high school diploma. In
about half of US states, high school students are required to pass an exit
exam to obtain a diploma. Clark and Martorell assume the random chance
that leads to students falling on either side of the passing score threshold
generates a credible RD design. They use this exit exam rule to evaluate the
impact on earnings of having a high school diploma, since the difference
in average actual learning between students with or without the diploma
should be negligible, when only considering student who had grades very
close to the passing grade cutoff. In this application a fuzzy RD design is
appropriate, because students need to fulfill other requirements in addition
to passing the exit exam in order to obtain a diploma, and some eligible
students can be exempted from taking the exit exam. These other require-
ments include, for example, maintaining a 2.0 GPA and earning a required
number of course credits. See Clark and Martorell (2010) for more details
on these requirements and exemptions.

Using Texas and Florida school administrative data combined with the
earnings information from the Unemployment Insurance (UI) records,
Clark and Martorell find that having a high school diploma per se has little
impact on earnings. This is an important finding for comparing human
capital theory to signaling theory as possible explanations of the returns to
education. We therefore want to investigate whether their estimates appear
stable near the RD cutoff. Here, the outcome Y is the present discounted
value of earnings 7 years after one takes the last round of exit exams. The
treatment T is whether a student receives a high school diploma or not.
The running variable X is the exit exam score (centered at the threshold
passing score). Following Clark and Martorell (2010, 2014), we focus on
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the last chance sample, that is, those who take the last round of exit exams

in high school. In our sample, X ranges from �100 to 50. About 46:7% of

these students receive a high school diploma, and their average earnings are

$25,721. Detailed information on the construction of the sample can be

found in Clark and Martorell (2010).
Figs. 2 and 3 show, respectively, the probability of receiving a high

school diploma and earnings as a function of the exit exam score. As we

can see from Fig. 2, the probability of receiving a high school diploma

changes from about 40% to about 90% at the threshold passing score.

This figure shows a modest change in slope at the threshold, from slightly

increasing to slightly decreasing, indicating a small negative CPD. Fig. 3

shows very little if any discontinuity in outcomes around the threshold,

which is the basis of Clark and Martorell’s finding that having a high

school diploma per se has little impact on earnings. The tangent lines

shown in Fig. 3 are close to parallel, indicating that TED (which depends

on the difference in the slopes of these lines) is also close to zero. This sug-

gests that Clark and Martorell’s results are stable, and not just a quirk of

Fig. 2. Fuzzy RD Discontinuity in the Probability and Tangents Lines at

Threshold. Source: Dataset from Clark and Martorell (2010).
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where the threshold is located. This small TED suggests that if the thresh-

old had been somewhat lower or higher, the estimated LATE would likely

still have been close to zero.
Our numerical estimates confirm what is seen in these figures. Table 2

presents both the estimated first-stage discontinuity and the RD LATE,

while Table 3 provides the CPD and the TED. We compare estimates based

on three popular bandwidth selectors: the CCT (Calonico et al., 2014), the

IK (Imbens & Kalyanaraman, 2012), and the CV (Ludwig & Miller, 2007)

bandwidths. The table also considers two different kernel functions, the tri-

angular kernel, which is shown to be optimal for estimating the conditional

mean at a boundary point (Fan & Gijbels, 1996) and the uniform kernel,

which is commonly used for its convenience. As noted earlier, we use local

quadratic regressions based on Porter (2003) and Gelman and Imbens

(2014). As discussed in Dong and Lewbel (2015), for fuzzy designs one can

estimate TED either by a local two-stage least squares (2SLS), using Z, ZX,

and ZX2 as excluded IVs for T and TX in the outcome model to get point

estimates, or one can estimate local quadratic regressions separately for the

reduced-form outcome and treatment equations, and then construct TED

Fig. 3. Fuzzy RD Discontinuity in the Outcome and Tangents Lines at Threshold.

Source: Dataset from Clark and Martorell (2010).

331Testing Stability of Regression Discontinuity Models

http://www.emeraldinsight.com/action/showImage?doi=10.1108/S0731-905320170000038013&iName=master.img-002.jpg&w=289&h=206


Table 2. Fuzzy RD Estimates of the Impacts of HS Diploma on Wages.

CCT1 IK1 CV1 CCT2 IK2 CV2

First-stage

discontinuity

0.497 0.499 0.516 0.497 0.502 0.523

(0.016)*** (0.012)*** (0.008)*** (0.017)*** (0.012)*** (0.007)***

RD LATE �1556.1 �1659.0 �113.8 �2742.3 �1067.5 �45.4

(2640.7) (2418.0) (1602.7) (2728.9) (2384.9) (1592.3)

Bandwidth 11.63 19.58 50.00 8.29 15.39 42.50

N 13,364 21,694 40,795 10,051 17,744 37,715

Notes: This table uses the Florida data from Clark and Martorell (2014); All RD LATE esti-

mates are based on the bias-corrected robust inference proposed by Calonico et al. (2014)

using local linear regressions; CCT refers to the optimal bandwidth by CCT; IK refers to the

optimal bandwidth proposed by Imbens and Kalyanaraman (2012); CV refers to the cross vali-

dation optimal bandwidth proposed by Ludwig and Miller (2007); 1 uses a triangular kernel,

and 2 uses a uniform kernel; Standard errors are in parentheses.
*Significant at the 10% level, **significant at the 5% level, ***significant at the 1% level.

Table 3. TED and CPD of Fuzzy RD Treatment Effects of HS Diploma
on Wages.

CCT1 IK1 CV1 CCT2 IK2 CV2

CPD �0.006 �0.006 �0.005 �0.010 �0.006 �0.004

(0.003)* (0.003)* (0.001)*** (0.006)* (0.003)* (0.001)***

TED 287.9 296.0 44.3 509.3 360.3 �23.0

(529.1) (499.2) (243.7) (464.2) (702.3) (194.2)

Bandwidth 24.41 25.16 50.00 23.46 21.04 50.00

N 21,694 26,846 40,795 17,744 23,460 41,220

Notes: This table uses the Florida data from Clark and Martorell (2014); All estimates are

based on local quadratic regressions; CCT refers to the optimal bandwidth proposed by

Calonico et al. (2014); IK refers to the optimal bandwidth proposed by Imbens and

Kalyanaraman (2012); CV refers to the cross validation optimal bandwidth proposed by

Ludwig and Miller (2007); 1 uses a triangular kernel, and 2 uses a uniform kernel; Bandwidth

and sample size N refer to those of the outcome equation; Bootstrapped Standard errors based

on 500 simulations are in parentheses.
*Significant at the 10% level, **significant at the 5% level, ***significant at the 1% level.

332 GIOVANNI CERULLI ET AL.



from the estimated intercepts and slopes in the two equations as described
in Section 4. For convenience, we chose the latter method, using the boot-

strap to calculate standard errors.
Consistent with findings in Clark and Martorell (2010), Table 2 shows

that the probability of receiving a high school diploma increases by about
50% at the threshold, which is statistically significant at the 1% level and is

largely insensitive to different bandwidth and kernel choices. In contrast,

all of the RD LATE estimates in Table 2 are numerically small and statisti-

cally not significant.
The estimates of CPD in Table 3 range from �0:004 to �0:010, which

are all statistically significant. The normalized exam score ranges from

�100 to 50. These estimates suggest that, given a 10-point decrease in the
exit exam score, the percent of students who are compliers would increase

from about 50% to somewhere between 54% and 60%. The relative CPD

implied by the estimates in Tables 2 and 3 is around five. So the set of

compliers looks unstable. However, as one would guess from Fig. 3, the
estimates of TED in Table 3 are rather small and not statistically

Fig. 4. Fuzzy RD LATE and TED Point Estimations and Confidence Intervals

over a Range of Bandwidths. Bootstrap Confidence Intervals Based on 200

Replications. Source: Dataset from Clark and Martorell (2010).
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significant. The implied relative TED estimates are all well below one.

Together these results indicate that although the set of compliers is not sta-

ble, Clark and Martorell’s conclusion (that among students with test scores

near the cutoff, there is little effect of having diploma or not) does appear

stable.
Finally, in Fig. 4, we check how sensitive these estimates are to band-

width choice (a comparable exercise was not needed in our previous empiri-

cal application because the extremely large sample size there resulted in

very little dependence on bandwidth). Consistent with Tables 2 and 3,

Fig. 4 shows that the point estimates of both RD LATE and TED at vary-

ing bandwidths are almost all near zero. The only exception is that the

TED estimate moves away from zero at the lowest bandwidth, however,

the confidence band around the estimate also widens considerably at that

bandwidth, so in all cases both the RD LATE and the TED are statistically

insignificant.

7. COVARIATES

As noted earlier, one advantage of TED over other tools for evaluating

RD estimates is that TED does not require covariates. Nevertheless, one

often does have covariates, and one may readily estimate TED (and CPD)

conditioning on covariate values. For example, given a binary covariate W ,

one may replace each βj in Eq. (1) with βj0 1�Wð Þ þ βj1W . Then in sharp

designs β20 and β21 are the average treatment effects conditioning on W ¼ 0

and W ¼ 1 respectively, and similarly β40 and β41 are conditional TED

values, conditioning on W ¼ 0 and W ¼ 1 respectively. For fuzzy design,

one would also replace each αj in Eq. (2) with αj0 1�Wð Þ þ αj1W . Then

πfw cð Þ ¼ β2w=α2w is fuzzy conditional average treatment effect, conditioning

on W ¼ w (for w equal to zero or one), and it follows immediately that the

corresponding fuzzy design conditional TED is β4w � πfw cð Þα4w
� �

=α2w. The
extension to more covariate values is straightforward.

One possible use for conditional TED values is that RD estimates

could turn out to be relatively stable for some sets of covariate values but not

others. One might then have more confidence in making policy recommenda-

tions in other contexts based on the more stable RD estimates. Alternatively,

one would have still more confidence in RD estimates if they appear

stable not just unconditionally, but also conditionally on each covariate value.
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8. TED AND MTTE

We have stressed the use of TED as a stability measure, but as derived in

Dong and Lewbel (2015) (see their paper for more details) under a local

policy invariance assumption TED equals the MTTE, that is the marginal

threshold treatment effect. Here, we provide a little more insight into what

TED means, by comparing the difference between TED and MTTE.
For sharp design RD, define S x; cð Þ ¼ E Y 1ð Þ � Y 0ð Þ∣X ¼ x;C ¼ c½ �, that

is, S x; cð Þ is the conditional expectation of the treatment effect Y 1ð Þ � Y 0ð Þ,
conditioning on having the running variable X equal the value x, and condi-

tioning on having the threshold equal the value c. If the design is fuzzy,

then assume S x; cð Þ is defined as conditioning on X ¼ x, C ¼ c, and on

being a complier. It follows from this definition that for sharp designs

π xð Þ ¼ S x; cð Þ, and for fuzzy designs πf xð Þ ¼ S x; cð Þ. So S c; cð Þ is the LATE

that is identified by standard RD estimation.
The level of the cutoff c is a policy parameter. This notation makes

explicit that the RD LATE depends on this policy. When x≠ c, the function

S x; cð Þ is a counterfactual. It defines what the expected treatment effect

would be for a complier who is not actually at the cutoff c, but instead has

his running variable equal to x, despite having the policy for everyone be

that the cutoff equals c.
Define the function s xð Þ by s xð Þ ¼ S x; xð Þ. What TED equals is given by

TED ¼ π0 cð Þ ¼ ∂S x; cð Þ
∂x

���
x¼c

:

In contrast, the MTTE is defined by

MTTE ¼ ds cð Þ
dc

¼ dS c; cð Þ
dc

¼ ∂S x; cð Þ
∂x

���
x¼c

þ ∂S x; cð Þ
∂c

���
x¼c

¼ π0 cð Þ þ ∂S x; cð Þ
∂c

���
x¼c

:

As the above equations show, TED equals MTTE if and only if
∂S x; cð Þ=∂c� ���

x¼c
¼ 0, that is, if one’s expected average treatment effect at a

given value x of the running variable would not change if c marginally
changed. This is the local policy invariance assumption defined by Dong
and Lewbel (2015). This assumption is similar to, but weaker than, the gen-
eral policy invariance condition defined by Abbring and Heckman (2007).

If we knew the MTTE, then we could evaluate how the treatment effect

would change if the cutoff marginally changed from c to cþ ε, using
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s cþ εð Þ ≈ s cð Þ þ ds cð Þ
dc

ε:

To illustrate these concepts, consider the empirical applications analyzed

in the previous section. In the Haggag and Paci (2014) application, local

policy invariance implies that, holding my taxi fare fixed at c ¼ $15, the dif-

ference in the amount I would tip depending on which set of tip suggestions

I saw would not change if, for everybody else, the threshold for switching

between the two sets of tip suggestions changed from c to cþ ε for a

small ε. In this application, local policy invariance is quite plausible, since

it is unlikely that people even notice the discontinuity at all. If local policy

invariance does hold here, then we can use our estimate of TED to estimate

how the tip suggestion LATE would change if the cutoff at which the

change in tip suggestions occurred were raised or lowered a little.
In contrast, consider the Clark and Martorell (2010, 2014) application.

There, local policy invariance roughly means that, holding my grade level

fixed at x ¼ c, my expected earnings difference between having a diploma or

not would not change if, for all other compliers, the grade cutoff changed

marginally from c to cþ ε for a tiny ε. In this application, local policy

invariance might not hold due to general equilibrium effects, for example, a

change in c might change employer’s perception of the value of a diploma.

More generally, local policy invariance might not hold for the same reasons

that Rubin’s (1978) stable unit treatment value assumption (SUTVA) could

be violated, that is, if treatment of one individual might affect the outcomes

of others. However, suppose local policy invariance does hold for this appli-

cation (or that ∂S x; cð Þ=∂c� ���
x¼c

is close to zero, as it would be if these general

equilibrium effects are small). Then the TED we reported would not just be

a stability measure, but it would also tell us how much the RD treatment

effect of getting a diploma would change if the cutoff grade were raised or

lowered by a small amount.
These cutoff change calculations are relevant because many policy

debates center on whether to change thresholds. Examples of such policy

thresholds include minimum wage levels, the legal age for drinking, smok-

ing, voting, medicare, or pension eligibility, grade levels for promotions,

graduation, or scholarships, and permitted levels of food additives or of

environmental pollutants. In addition to measuring stability, TED at mini-

mum provides information that is relevant for these debates, since even if

local policy invariance does not hold, TED at least comprises one compo-

nent of the MTTE.
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9. CONCLUSIONS

We reconsider the TED estimator defined in Dong and Lewbel (2015), and

we define a related CPD estimator for fuzzy RD designs. We note how

both of these are nonparametrically identified and can be easily estimated

using only the same information that is needed to estimate standard RD

models. No covariates or other outside information is needed to calculate

the TED or CPD.
Dong and Lewbel (2015) focus on using the TED to evaluate the impact of

a hypothetical change in threshold given a local policy invariance assumption.

In contrast, we show here that both the TED and CPD provide valuable infor-

mation, regardless of whether local policy invariance holds or not. In particu-

lar, we claim that the TED should be examined in nearly all RD applications,

as a way of assessing the stability and hence the potential external validity of

RD estimates. Additionally, in fuzzy RD applications, one should examine

the CPD (in addition to the TED), since the CPD can be used to evaluate the

stability of the complier population. We provide a simple rule of thumb for

determining if TED or CPD are large enough to indicate instability.
We illustrate these claims using two different empirical applications, one

sharp design and one fuzzy design. We find that the sharp RD treatment

effects of taxi tip suggestions reported in Haggag and Paci (2014) are not

stable, indicating that the magnitudes of their estimated treatment effects

might change significantly at slightly lower or higher tip levels. The second

application we consider is the fuzzy RD model of Clark and Martorell

(2014). The CPD of their model suggests that the set of compliers is not sta-

ble, but the TED is numerically small and statistically insignificant. This

near-zero TED suggests that their finding of almost no effect of receiving a

diploma on wages (conditional on holding the level of education, as indi-

cated by test scores, fixed) is stable, and so would likely remain valid at

somewhat lower or higher test score levels.
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