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Abstract

One of the key identifying assumptions for regression discontinuity (RD) designs is the local

independence assumption (LIA). This paper shows that LIA puts a restriction on treatment effect

heterogeneity and hence may not hold in many empirical applications. This paper then shows that

LATE in both sharp and fuzzy designs can be identified under alternative smoothness conditions,

and that the required smoothness can be satisfied given a weak and empirically plausibly behav-

ioral assumption, in the spirit of Lee (2008). A sufficient (but stronger than necessary condition) is

smoothness of the conditional density of the running variable, which provides formal justification

for McCrary’s (2008) density test in fuzzy RD designs. Theoretical and empirical relevance of the

discussion is illustrated in two empirical applications.
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1 Introduction

Regression discontinuity (RD) designs have been widely used in many areas of empirical research.

In a seminal paper, Hahn, Todd and van der Klaauw (2001, hereafter HTV) provide a set of formal

assumptions for identifying and estimating a local average treatment effect (LATE) using RD designs.

One of the key assumptions used by HTV is that the treatment effect and potential treatment status
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are jointly independent of the running variable in the neighborhood of the RD cutoff.1 This local

independence assumption (LIA) is a local version of the independence assumption proposed in the

original LATE paper by Imbens and Angrist (1994).

This paper shows that it is both theoretically and empirically useful to relax LIA in RD designs.

First of all, restricting the treatment effect to be independent of the running variable places an un-

desirable restriction on treatment effect heterogeneity, since in RD designs the running variable is

frequently one of the key determinants of (or at least is correlated with) outcomes.2,3 As I show later,

this type of heterogeneity would arise naturally in many empirical scenarios. Second of all, by not

allowing the treatment effect to depend on the running variable (implying no slope or higher order

derivative changes right at the RD cutoff in the sharp RD design), such an independence assump-

tion prevents the opportunity to explore any discrete slope or derivative changes at the RD cutoff. In

practice, taking into account the slope change serves as the basis for recent papers such as Calonico,

Cattaneo and Titiunik (2014), Dong and Lewbel (2015) and Bertanha and Imbens (2014) among oth-

ers.

This paper provides formal smoothness conditions that suffice to identify LATE in both sharp and

fuzzy RD designs without LIA. This paper further relates the required smoothness to a weak behav-

1The alternative assumption HTV impose is either that the treatment effect is constant across individuals or that the

treatment be independent of the treatment effect conditional on the running variable near the RD threshold. As HTV note,

these alternative assumptions rule out self-selection into treatment based on idiosyncratic gains, and so is often not be

realistic.

2See, e..g., Chapter 6 of Angrist and Pischke (2008) for discussion of cases where the treatment effect is allowed to

depend on the running variable.

3The RD treatment effect can potentially be a function of relevant observed and unobserved covariates, so it may either

directly depend on the running variable or is correlated with it through other covariates. A dependency means a non-zero

average derivative of the RD treatment effect with respective to the running variable.
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ioral assumption, in the spirit of Lee (2008). For the special case of sharp RD designs, Lee (2008)

provides behavioral assumptions that lead to continuity of the conditional density (conditional on an

individual’s ‘identity’) of the running variable, and hence local randomization and causal inference.

In contrast, this paper discusses identification of LATE in RD designs based on minimal smoothness

conditions and then similarly relate smoothness to a lack of manipulation over the running variable.

The analysis here instead focuses on fuzzy design RD, with sharp design following as a special case.

This requires dealing with (via smoothness assumptions) the probabilities with which individuals may

self-select into types such as compliers or always takers. The theorem provides precisely the same

identification results as those by HTV, but under a smoothness assumption instead of LIA.

This paper also discusses a testable implication of LIA given smoothness and evaluates the two al-

ternative assumptions empirically. In particular, LIA implies locally constant treatment effect. When

LIA is plausible, one does not need to under-smooth in order to shrink the bias to zero and hence to

have correct inference. The robust biased-corrected inference proposed by Calonico, Cattaneo and

Titiunik (2014) will be asymptotically equivalent to the inference without bias-correction.

Results in this paper provide formal support for performing McCrary’s (2008) density test in

fuzzy design RD. Many empirical applications implement McCrary’s (2008) density test to assess the

plausibility of RD assumptions. Despite its popularity, no justification for this test exists for fuzzy

designs. Hitherto, the only rationale was Lee’s sharp design analysis.

There exist several RD studies that do not impose independence. Battistin and Rettore (2008)

relax the HTV independence assumption by looking at the one-sided fuzzy RD design without always

takers. They show that in this case, continuity of the conditional mean of potential outcome without

treatment is sufficient for identification, though they do not discuss more generally weaker assump-

tions for RD identification. Frandsen, Frolich and Melly (2012) provide identification and estimation
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of quantile RD treatment effects without imposing the independence assumption. In contrast, this

paper discusses theoretically and empirically identification of the standard RD LATE under two alter-

native assumptions, i.e., smoothness vs. local independence, and relates the identifying assumption

to behavioral interpretations. More recently, Bertanha and Imbens (2014) adopt a similar smoothness

assumption to evaluate the external validity in fuzzy RD designs. Yanagi (2015) adopts precisely this

paper’s framework to provide identification of a local weighted average treatment effect (LWATE) in

the presence of measurement error in RD designs.

The rest of the paper is organized as follows: The next section shows a few motivating empirical

examples. Section 3 provides RD identification under the alternative assumptions. Section 4 discusses

the smoothness condition vs. LIA. Section 5 presents two empirical applications evaluating both

assumptions. Brief concluding remarks are provided in Section 6.

2 Motivating Examples

To motivate the discussion in this paper, consider an outcome model (or a local linear approximation

of it) yi = a + b (zi − z0) + τ xi + τ 1 (zi − z0) xi + ei , where yi is the observed outcome, xi is a

binary treatment indicator, so xi = 1 if treated and 0 otherwise, and zi is the running variable with z0

being the RD threshold. The treatment effect is then τ + τ 1zi . LIA requires the treatment effect to be

independent of zi near z0, so τ 1 = 0. In sharp design, τ 1 = 0 means no slope change at the cutoff.

In the following, I briefly discuss a few sharp and fuzzy RD examples to motivate the discussion

in this paper. First consider the standard sharp RD design estimating the electoral advantage of in-

cumbency in the US house of representatives in Lee (2008). The treatment xi is the Democratic Party

being the incumbent party. The running variable zi is the Democratic Party’s winning margin, or the
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Figure 1: Probability of the Democratic Party winning election t+1 against its winning margin in election t

Democratic Party’s vote share minus its strongest opponent’s, so z0 = 0. The outcome is whether a

Democrat won the next election. In this case, the independence assumption by HTV would require

that the incumbent party’s electoral advantage does not depend on its winning margin. Intuitively, the

incumbent party’s electoral advantage may depend on its winning margin either directly or indirectly.

Figure 1, which is reproduced from Figure 5-(a) in Lee (2008), shows how the probability of

a Democrat winning in election t + 1 depends on its winning margin in election t . The slope gets

steeper right above the threshold, implying that the larger the incumbent party’s share is in the previous

election, the greater their chance of winning the next election, i.e., the incumbency advantage may

well depend on the winning margin.

Consider another RD model estimating the effect of the Adams Scholarship program on college

choices (Goodman, 2008). The Adams Scholarship program provides qualified students tuition wa-

vers at in-state public colleges in Massachusetts, United States, with the goal of attracting talented

students to the state’s public colleges. The treatment xi is eligibility for the Adams Scholarship. It is

determined by whether zi , a student’s test score from the Massachusetts Comprehensive Assessment
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System (MCAS) exceeds a certain threshold, so the running variable is the MCAS test score. Figure 2

below shows the probability of choosing a four-year public college against the number of grade points

to the eligibility threshold.

As is clear from Figure 2, the probability of choosing a four-year public college jumps at the eligi-

bility threshold, but then declines quickly once further above the threshold. The dramatic downward

slope change at the threshold suggests that a student’s response to an Adams Scholarship, and hence

the treatment effect, likely depends on her test score, which if true would invalidate LIA. Note that

as will be shown later, the dramatic downward slope change is induced neither by manipulation or by

missing covariates in this case. Using a differences in differences (DID) approach, Goodman (2008)

shows that qualified students with test scores near the eligibility threshold react much more strongly

to the price change than students with test scores further above the threshold. This is likely because

students trade college quality with prices. Better qualified students may be admitted to private col-

leges of much higher quality, and hence face a large quality drop if they instead accept the Adams

Scholarship and attend a Massachusetts public college. In contrast, for marginal winners (those with

test scores right above the threshold) the quality difference is smaller or non-existent, making the

choice of a public college with a scholarship relatively more worthwhile given its lowered price.

A third example is the RD model used to evaluate the impact of remedial education on students’

outcomes (see, e.g., Jacob and Lefgren 2004 and Matsudaira 2008). The treatment is receiving reme-

dial education, such as attending summer school, if a student’s test score falls below some threshold

failing grade, and the outcome is later academic performance. LIA requires that the effectiveness

of remedial education for marginal students does not depend on one’s pre-treatment test score. In

contrast, the smoothness assumption imposed in this paper only requires that no students have precise

manipulation of their test scores and no other changes at the cutoff have an impact on students’ later
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Figure 2: Probability of choosing a 4-year public college against the grade points from the eligibility threshold

academic performance.

3 Identification Given Smoothness

This section discusses formal identification of the LATE in RD designs with smoothness conditions.

The discussion focuses on the fuzzy design, treating the sharp design as a special case. To facilitate

the discussion, I use the same notation as in HTV (2001). Let y1i and y0i be the potential outcomes for

an individual i under treatment or no treatment, respectively (Neyman 1923, Fisher 1935, Rubin 1974,

1990). Recall that xi is the treatment indicator. The observed outcome can then be written as yi =

αi+β i xi , where αi := y0i , and β i := y1i−y0i . Define the potential treatment status as xi (z) for a given

value z that zi could take on. When zi is an instrument, one of the key assumptions for identifying

LATE in Imbens and Angrist (1994) is that the triplet (y0i , y1i , xi (z)) is jointly independent of zi (See

Condition 1 of their Theorem 1). This independence assumption subsumes random assignment of the

instrument zi and an exclusion restriction asserting that zi affects the outcomes only through its effect

on the treatment xi (see discussion in Angrist, Imbens and Rubin, 1996).
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In the RD framework, zi is the running variable, and z0 is the RD cutoff. In discussing the

fuzzy RD design with a variable treatment effect, HTV analogously assume that (β i , xi (z)) is jointly

independent of zi in a neighborhood of z0 (See their conditions in Theorem 2).

In the following I show that what is required to identify RD LATE is continuity of the conditional

probability of different types of individuals (i.e., always takers, never takers, compliers and defiers)

and continuity of type-specific means of potential outcomes, conditional on the running variable in the

neighborhood of the RD cutoff. In the sharp design, everyone is a complier, the required smoothness

reduces to continuity of the conditional means of potential outcomes. Further I show that the required

smoothness is readily satisfied given continuity of the density of the running variable for every ‘in-

dividual’ characterized by potential outcomes and types, extending Lee (2008)’s sharp design results

to handle fuzzy designs. However, note that smoothness of such conditional density is sufficient but

stronger than necessary to identify average treatment effects.

Let an individual’s treatment status below the RD cutoff be generated by the random function

x0i (z) for any z ∈ (z0 − ε, z0) and that above the RD cutoff be generate by x1i (z) for z ∈ [z0, z0 − ε)

for some small ε > 0. Further define an individual’s counterfactual status just above or just below the

cutoff as x1i := limε→0 x1i (z0 + ε) and x0i := limε→0 x0i (z0 − ε), respectively, if these limits exist.4

For the known fixed threshold z = z0, one can then define four types of individuals following

Angrist, Imbens, and Rubin (1996): ψ i = A if x1i = x0i = 1 (always takers), ψ i = N if x1i = x0i =

0 (never takers), ψ i = C if x1i > x0i (compliers), and ψ i = D if x1i < x0i (defiers).

ASSUMPTION A1a (Smoothness): E
[
yti | ψ i = ψ, zi = z

]
and Pr

[
ψ i = ψ | zi = z

]
, for t ∈

{0, 1} and ψ ∈ {A, N ,C} are continuous in z at z = z0.

4Note that defining these unobserved counterfactuals this way is without loss of generality, since what matters are only

those at the limit when z goes to z0.
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A1a assumes smoothness of conditional means (probabilities), which replaces LIA. A1a states that

the conditional means of potential outcomes y0i and y1i for each type of individuals ψ ∈ {A, N ,C}

and the probabilities of different types are continuous at the cutoff z0.

A1a nests the sharp design assumption by HTV as a special case. For sharp design, everyone is a

complier, so A1a reduces to the assumption that E
[
y0i | zi = z

]
and E

[
y1i | zi = z

]
are continuous

at z = z0.

Define the random vector wi := (y0i , y1i , ψ i ) with support W . Denote the conditional density of

the running variable zi conditional on wi as fz|w(·) and the density of the running variable as fz(·).

ASSUMPTION A1b (Stronger Smoothness): fz|w(·) is continuous in a neighborhood of z = z0

for all w ∈W . fz(·) is continuous and strictly positive in a neighborhood of z = z0.

Assumption A1b is a statement asserting that for each individual defined by wi the density of

the running variable zi is continuous. For an individual i , given her draw of the running variable,

wi completely determines her treatment status xi and outcome yi . A1b is similar to Condition 2b

in Lee (2008), except that wi in Lee (2008) is a one-dimensional random variable representing an

individual’s “identity," and that the discussion in Lee (2008) focuses on sharp design RD.

Given A1b, any particular individual’s probability of being just above z0 is bounded away from 0

and 1, implying that they do not have precise control over the running variable. Note that continuity

of fz|w(·) also rules out other discrete changes at the cutoff that would affect potential outcomes, e.g.,

there shouldn’t be other policies or programs using the same cutoff.

wi := (y0i , y1i , ψ i ) puts no restrictions on treatment effect heterogeneity. Therefore, the alterna-

tive assumptions justify identification of the RD LATE even when the treatment effect is arbitrarily

heterogenous (and particularly is correlated with the running variable). These assumptions allow for

9



self-selection into treatment based on idiosyncratic gains and selection into different types. So, e.g.,

there can be endogenous selection into compliers, as long as the probability of being a complier is

smooth at the cutoff.

LEMMA: Given A1b, A1a holds.

Proofs are in the Appendix. Compared with A1a, A1b is stronger than necessary. For example,

one may have missing observations above or below the cutoff so that the density has a discontinuity.

As long as at both sides the observations are missing at random, A1a may still hold. A1b is more

appealing considering its plausible behavioral interpretation and testable implications. For example,

A1a provides a formal support for using the McCrary (2008)’s density test to assess the validity

of fuzzy design RD (see Lee 2008 for discussion in sharp design). Note that one can not test the

continuity of the conditional density, but only the unconditional density of the running variable. It

then follows that what is tested is neither sufficient nor necessary for the validity of an RD design.

Define x+ := limε→0 E [xi | zi = z + ε], x− := limε→0 E [xi | zi = z − ε], y+ := limε→0 E
[
yi | zi = z + ε

]
and y− := limε→0 E

[
yi | zi = z − ε

]
. These limits exist, given our assumption of smoothness (see

the proof of the theorem).

ASSUMPTION A2 (Monotonicity): Pr
(
ψ i = D

)
= 0.

ASSUMPTION A3 (RD): x+ 6= x−.

A2 rules out defiers. A2 can be weakened by the assumption requiring conditionally more compli-

ers than defiers, conditional on potential outcomes (de Chaisemartin, 2015). A3 assumes a first-stage

exists, i.e., there is a positive fraction of compliers. Both A2 and A3 are also assumed by HTV, fol-

lowing from Imbens and Angrist (1994). The only difference is that the above assumes neither that xi
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is independent of β i , nor that (β i , xi (z)) is jointly independent of zi for zi near z0. Instead I assume

A1a, which is guaranteed by A1b. 5

THEOREM: Given assumptions A1a, A2 and A3, the local average treatment effect for compliers

at zi = z0 is identified and is given by E
[
y1i − y0i | zi = z0, ψ i = C

]
= y+−y−

x+−x−
.

This theorem shows that assumptions A1a, A2 and A3 suffice to obtain the standard RD identifi-

cation results established in HTV (2001).

The above theorem shows identification of mean treatment effects in RD models. Given the

stronger smoothness A1b, the distribution of wi := (y0i , y1i , ψ i ) is continuous at the RD cutoff,

so one may identify any distributional effects in addition to mean effects (see, e.g., Frandsen, Frolich

and Melly, 2012).

Intuitively, no precise manipulation implied by A1b means that di := 1 (zi ≥ z0) is a valid in-

strument, where 1 (·) is an indicator function equal to 1 if the expression in the bracket is true, and

0 otherwise. Then by Theorem 1 of Imbens and Angrist (1994), the ratio of y+ − y− to x+ − x−

(the two intention-to-treat causal estimands),
y+−y−

x+−x−
, identifies a LATE for compliers who change

treatment status when the instrument di changes value from 0 to 1.

4 Smoothness vs. Local Independence

In the following I discuss the theoretical and empirical importance of relaxing LIA. LIA implies that

treatment effects are locally constant, while the alternative smoothness assumption requires only that

treatment effects be smooth near the RD cutoff. Therefore the alternative assumption can be useful

5Given A1b, the joint distribution for (y0i , y1i , ψ i ) given zi = z is continuous at z = z0. The independence assumption

imposed by HTV may be seen to hold in the limit as z approaches to z0, which is what is required for identification.
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whenever it is necessary to incorporate such treatment effect heterogeneity and/or smoothness.

One example is Calonico, Cattaneo and Tituinik (2014). They propose robust bias-corrected con-

fidence intervals that are not sensitive to “too large” bandwidth choices. Under LIA, such a bias

correction and hence robust inference would not be necessary. Take for an example a sharp design

RD model, the bias from the local linear regression above or below depends on the derivative of the

conditional mean of the outcome right above and below the RD cutoff. Under the local independence

assumption, the two derivatives will be the same and hence the incurred biases from above and below

will be cancelled out.6

Another example is Dong and Lewbel (2014). They investigate external validity of RD LATE,

and propose a non-parametric approach of extrapolating the RD LATE away from the RD cutoff,

and identifying how the RD LATE would change when the threshold is marginally changed with

additional assumptions. Under LIA, the external validity away from the cutoff is guaranteed and so

one can directly apply the standard RD LATE to points near but not at the RD cutoff.

A third example is Bertanha and Imbens (2014), who also discuss evaluating the external validity

of the RD LATE at the current threshold. In particular, they propose simple tests to evaluate whether

one can generalize the RD LATE to subpopulations other than compliers, and to subpopulations other

than those with forcing variable equal to the threshold. They employ smoothness conditions (citing

this paper) since under LIA, external validity of the RD LATE to points other than the RD cutoff holds

automatically.

One may assess the validity of LIA, given smoothness. LIA requires that individuals’ treatment

effects and types do not depend on the running variable near the RD cutoff. Therefore, given LIA,

6For fuzzy design RD models, the bias depends on the derivative differences in both the conditional means of treatment

and the conditional means of the outcome from above and blow the RD cutoff.
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∂E(y1i − y0i | zi = z, ψ i = C)/∂z |z=z0
= 0. As discussed, if the true outcome model or a local

linear approximation of it (with a uniform kernel ) is yi = a+ b (zi − z0)+ τ xi + τ 1 (zi − z0) xi + ei

for observations near the RD cutoff, then LIA implies that τ 1 = 0. In sharp design RD models, the

treatment is xi = di := 1 (zi ≥ z0), so τ 1 = 0 means no slope change at the RD cutoff.

Under minimal further smoothness assumptions, i.e., assuming continuous differentiability in-

stead of just continuity of the conditional means and probabilities in A1b, one can nonparametri-

cally identify and estimate ∂E(y1i − y0i | zi = z, ψ i = C)/∂z |z=z0
for both sharp and fuzzy RD

designs (see, discussion in Dong and Lewbel, 2014). Note that virtually all empirical implemen-

tations of RD models satisfy this slightly stronger assumption.7 For sharp design, this amounts to

estimating the slope change at the RD cutoff by local polynomial regressions. For fuzzy design,

with a uniform kernel, one can estimate this derivative by the coefficient of the interaction term

between the treatment xi and the (re-centered) running variable (zi − z0) in the outcome equation

yi = a + b (zi − z0)+ τ xi + τ 1 (zi − z0) xi + ei , with di and di (zi − z0) be the excluded IVs. More

complicated kernels can be accommodated by estimating weighted two stage least squares (2SLS)

instead of 2SLS, with the chosen kernel function as weights. One can then evaluate LIA by testing

the significance of this estimated derivative. If it is significant, then LIA likely does not hold.

The alternative smoothness assumption proposed in this paper can be evaluated by testing the

continuity of the empirical density of the running variable and the continuity of the pre-determined

covariate means. I do not discuss these tests in detail, since they are the standard practice currently.

One can similarly test the further smoothness required for identifying the derivative of the treatment

effect by testing continuity at the RD cutoff of both the level and slope (the intercept and the first-

7Parametric models generally assume polynomials or other differentiable functions, while most nonparametric estima-

tors, including local linear regressions, assume (for establishing asymptotic theory) at least continuous differentiability.
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derivative of local polynomial regressions) of the density of the running variable as well as those of

the conditional mean functions of pre-determined covariates.

5 Empirical Applications

This section provides two empirical applications. One is for the sharp design, and the other is for

the fuzzy design. The goal is to evaluate the plausibility of the two alternative assumptions, i.e.,

independence vs. smoothness. I provide evidence that the smoothness conditions plausibly hold in

both cases, while the independence assumption does not, given smoothness.

5.1 Sharp Design

This section estimates the sharp RD model of incumbency advantage in the US house election, using

the same data as those used in Lee (2008) and Lee and Lemieux (2010).8 Recall that the treatment in

this case is an indicator that the Democratic Party was the incumbent party, the running variable is the

Democratic Party’s winning margin in election t , and the outcome is whether a democratic candidate

won in election t + 1.

The sample consists of 6,558 elections over the 1946 - 98 period (see Lee 2008 for more detail).

Following Lee and Lemieux (2010) and Porter (2003), I use local linear regressions to estimate the

local causal effect of being an incumbent party. Analogous to using local linear regressions to estimate

the means at a boundary point, local quadratic regressions may be appropriate for estimating slopes

(see, e.g., discussion in Calonico, Cattaneo, and Titiunik, 2014). I therefore adopt local quadratic

regressions to estimate the derivative of the RD treatment effect (corresponding to the slope change)

8Caughey and Sekhon (2011) show possible manipulation in this case. However, Lee and Lemieux (2014) notice that

this can be explained by the sampling differences between Caughey and Sekhon (2011) and Lee (2008).
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at the RD cutoff.

Triangular kernel is recommended for estimating conditional means at a boundary point (Fan and

Gijbels, 1996). I adopt the triangular kernel, but also report results using the uniform kernel, which

is frequently used for convenience. Three different bandwidth estimators are used to choose the

optimal bandwidth for the local linear or local quadratic regressions. These are the plug-in estimator

proposed by Calonico, Cattaneo and Titiunik (2014), the plug-in estimator proposed by Imbens and

Kalyaranaman (2014), and the cross-validation estimator proposed by Ludwig and Miller (2007).

Estimates of the treatment effect as well as the derivative of the treatment effect at the RD cutoff are

Table 1 Sharp RD Estimates of the Incumbency Advantage

CCT IK CV CCT_u IK_u CV_u

RD LATE 0.387 0.402 0.411 0.364 0.386 0.414

(0.050)*** (0.046)*** (0.039)*** (0.051)*** (0.046)*** (0.040)***

Bandwidth 0.160 0.147 0.202 0.118 0.116 0.153

N 1,850 1,725 2,291 1,405 1,375 1,784

Polynomial order 1 1 1 1 1 1

Note: This table uses data from Lee (2008); All RD LATE estimates are based on bias-corrected robust

inference proposed by Calonico, Cattaneo and Titiunik (CCT, 2014), using local linear regressions; using

local linear regressions; CCT and IK refer to the optimal bandwidths proposed by CCT and Imbens and

Kalyanaraman (2014), respectively; CV refers to the cross validation bandwidth proposed by Ludwig and

Miller (2007); CCT, IK, and CV use the triangular kernel, and CCT_u, IK_u and CV_u use the Uniform

kernel; Standard errors are in parentheses; Standard errors are in parentheses; * significant at the 10%

level, ** significant at the 5% level, ***significant at the 1% level.

reported Table 1 and Table 2, respectively. The derivative of the treatment effect in this case measures

how the incumbency advantage depends on the incumbent party’s winning margin, corresponding to

the slope change at the cutoff in Figure 1.

As one can see from Table 1 and Table 2, the estimated incumbency effects and their derivatives

are largely robust to different bandwidth choices. Consistent with estimates in Lee (2008) and Lee

and Lemieux (2010), the average incumbency effect is estimated to be 0.364 - 0.414, meaning that

when the Democratic Party is the incumbent party, it increases their probability of winning the next

election by 36.4% to 41.4%. The estimated derivative of the treatment effect is 1.143 - 1.349, so given
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Table 2 The Derivative of the Incumbency Advantage

CCT IK CV CCT_u IK_u CV_u

TED 1.349 1.240 1.209 1.391 1.143 1.169

(0.599)** (0.442)*** (0.411)*** (0.560)** (0.434)*** (0.450)***

Bandwidth 0.353 0.432 0.452 0.304 0.361 0.352

N 3,796 4,410 4,570 3,289 3,866 3,785

Polynomial order 2 2 2 2 2 2

Note: This table uses data from Lee (2008); All estimates are based on local quadratic regressions; CCT

and IK refer to the optimal bandwidths proposed by Calonico, Cattaneo, and Titiunik (2014) and Imbens

and Kalyanaraman (2014), respectively; CV refers to the cross validation bandwidth proposed by Ludwig

and Miller (2007); CCT, IK, and CV use the triangular kernel, and CCT_u, IK_u, and CV_u uses the

uniform kernel; Bandwidth and sample size N refer to those of the outcome equation; Bootstrapped

Standard errors based on 500 simulations are in parentheses; * significant at the 10% level, ** significant

at the 5% level, ***significant at the 1% level.

a 1 percentage point increase in the Democrats’ winning margin, the probability for their candidates

to win the next election increases by 1.143% to 1.349%. The estimated incumbency effects as well

as their derivatives are all statistically significant. Significance of the estimated derivative of the

treatment effect suggests that the incumbency advantage indeed depends on the incumbent party’s

winning margin. That is, LIA can be rejected in this case.

Table 3 Smoothness of the Covariate Mean and Density of the Running Variable

Estimates Bandwidth No of

obs

Polynomial

order

Previous Election Vote Share

Jump -0.001 (0.015) 0.190 2,170 1

Kink -0.150 (0.337) 0.239 2,663 2

Density of the Winner Margin in Election t

Jump 0.138 (0.161) 0.205 82 1

Kink 2.400 (3.629) 0.212 84 2

Note: Standard errors are in parentheses; All estimates use the CCT optimal bandwidth

and the triangular kernel.

Table 3 reports at the RD cutoff the estimated jumps or kinks in the conditional mean of an impor-

tant covariate, the Democratic vote share from the previous election. Also reported is the estimated

jump and kink in the empirical density of the running variable at the RD cutoff. I present only esti-

mates by the local linear or quadratic regressions with triangular kernels and bandwidths chosen by

the Clonico, Cattaneo and Tituinik’s (2014) plug-in estimator. Estimates using uniform kernels and
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other bandwidths are similar and are therefore suppressed to save space. Estimates in both tables show

that none of the estimated jumps and kinks are statistically significant, so the smoothness assumption

plausibly holds. These results support that the RD design in this case is valid, even though LIA likely

does not hold.

5.2 Fuzzy Design

This section estimates the impact of academic probation on the sbsequent dropout probability, using

a fuzzy RD design based on the probation rule in colleges. Nearly all colleges and universities in the

US adopt academic probation to motivate students to stay above a certain performance standard. Typ-

ically students are placed on academic probation if their GPAs fall below a pre-determined threshold.

Students on academic probation face the real threat of being suspended if their performance continues

to fall below.

Despite of the prevalence of this academic policy, limited empirical research exists investigating

its impacts on students’ outcomes. In a seminal study, Lindo et al. (2010) examine the causal effects

of academic probation on students’ performance using data from a large Canadian university. Fletcher

and Tokmouline (2010) perform similar analysis using the US data. They both show that placement

on academic probation discourages students from enrolling in school. Both studies adopt the standard

sharp RD design to evaluate the effects of the first year (or first-term) probation.

This paper adopts a fuzzy RD design to evaluate the impact of ever placement on probation on the

overall college dropout rate. More importantly, this paper evaluates how the discouragement effect

of academic probation depends on the running variable, a student’s pre-treatment GPA, which would

not be allowed for under LIA. Let Y be the binary indicator for dropout, which is 1 if a student drop

out of college and 0 otherwise. The running variable R is the first semester GPA. The treatment T is
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Figure 3: Academic Probation and Dropout Rates against First-semester GPA

the indicator for ever being placed on academic probation in college. I use the confidential data from

a large public university in Texas, which are collected under the Texas Higher Education Opportunity

Project (THEOP). An undergraduate at this university is considered as ‘scholastically deficient’ if his

or her semester or cumulative GPA falls below 2.0. The actual probation status is not observed in

the data. In this paper’s analysis, treatment is 1 as long as a student’s cumulative or semester GPA is

below the school-wide cutoff 2.0, i.e., when a student is considered as ‘scholastically deficient.’9 The

data used here represent the entire population of the first-time freshmen cohorts between 1992 and

2002. The total sample size is 64,310.

Figure 3 presents the probability of ever being placed on academic probation and the dropout

probability as functions of the first semester GPA. In the left graph, for those whose first semester

GPA falls below the probation threshold, the probability of being on probation is 1 by construction;

9In practice, when a student is considered as scholastically deficient, he or she may only be given an academic warning.

However, a quick survey administered to the relevant academic deans shows that students are generally placed on probation

in this case.
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for those whose first semester GPA is marginally above, there is still an over 60% chance for them to

be placed on academic probation later. This graph shows a dramatic slope change at the RD cutoff,

indicating that the probability of compliers depends dramatically on the running variable. In the right

graph, the dropout probability also shows a discernible slope change the RD cutoff, in addition to a

small level change.

Table 4 Fuzzy RD Estimates of the Impact of Academic Probation on Dropout Rates

CCT IK CV CCT_u IK_u CV_u

1st-stage discontinuity -0.343 -0.345 -0.352 -0.336 -0.341 -0.378

(0.010)*** (0.010)*** (0.016)*** (0.010)*** (0.010)*** (0.023)***

RD-LATE 0.068 0.108 0.108 0.073 0.128 0.120

(0.053) (0.084) (0.085) (0.049) (0.084) (0.106)

Bandwidth 0.869 0.723 0.681 0.762 0.568 0.487

N 31,396 25,149 23,623 26,780 19,413 15,763

Polynomial order 1 1 1 1 1 1

Note: This table uses the Administration and Transcript Data from a Public University in Texas; All RD

LATE estimates are based on bias-corrected robust inference proposed by Calonico, Cattaneo and Titiunik

(CCT, 2014), using local linear regressions; CCT and IK refer to the optimal bandwidths proposed by CCT

and Imbens and Kalyanaraman (2014), respectively; CV refers to the cross validation bandwidth proposed

by Ludwig and Miller (2007); CCT, IK, and CV use the triangular kernel, and CCT_u, IK_u and CV_u

use the Uniform kernel; Standard errors are in parentheses; * significant at the 10% level, ** significant

at the 5% level, ***significant at the 1% level.

The estimated change in the probation probability (shown in Table 4) at the cutoff is largely

insensitive to the bandwidths and kernel functions used. The estimates range from -33.6% to -37.8%,

all of which are statistically significant at the 1% level. Table 4 also reports the estimated RD LATE.

Placement on academic probation is shown to have a small, positive, yet insignificant impact on the

college dropout rate right at the RD cutoff. However, in Table 5, I report the estimated TED along

with the first-stage slope change. The latter indicates how the probability of compliers depend on

the running variable at the RD cutoff in this fuzzy RD model. Both sets of derivative estimates

are largely robust to the choices of optimal bandwidths and kernel functions and are statistically

significant at the 1% level. The estimated TED is -0.568 by the CCT bias-corrected estimation with

a triangular kernel. This implies that the discouragement effect of placement on academic probation
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increases significantly as a student’s GPA moves marginally below the cutoff. In particular, when

a student’s first-semester GPA decreases by 0.1, the probability of dropping out of college once on

probation increases by 5.68%. This is large in magnitude, compared with the change of 7-13% in the

dropout rate at the cutoff. These results provide strong evidence that both individual types and the RD

treatment effects depend on the running variable at the RD cutoff and hence LIA is violated.

Table 5 The derivative of the Impact of Academic Probation on Dropout Rates

CCT IK CV CCT_u IK_u CV_u

1st-stage derivative -0.371 -0.269 -0.336 -0.400 -0.298 -0.342

(0.022)*** (0.077)*** (0.033)*** (0.018)*** (0.090)*** (0.045)***

TED -0.568 -0.584 -0.555 -0.754 -0.639 -0.591

(0.150)*** (0.376) (0.144)*** (0.103)*** (0.422) (0.147)***

Bandwidth 1.604 0.868 1.648 1.807 0.726 1.358

N 54,151 31,396 54,595 59,306 25,185 47,846

Polynomial order 2 2 2 2 2 2

Note: This table uses the Administration and Transcript Data from a Public University in Texas; All

estimates are based on local quadratic regressions; CCT and IK refer to the optimal bandwidths proposed

by Calonico, Cattaneo and Titiunik (2014) and Imbens and Kalyanaraman (2014), respectively; CV refers

to the cross validation bandwidth proposed by Ludwig and Miller (2007); CCT, IK, and CV use the

triangular kernel, and CCT_u, IK_u, and CV_u uses the uniform kernel; Bandwidth and sample size N

refer to those of the outcome equation; Bootstrapped Standard errors based on 500 simulations are in

parentheses; * significant at the 10% level, ** significant at the 5% level, ***significant at the 1% level.

To test the smoothness conditions in this case, I estimate the jumps and kinks in the conditional

means of covariates and those in the density of the running variable at the RD cutoff. Covariates

investigated include male, Black, and Hispanic dummies, as well as an indicator for being in the top

25% of the high school class. The results are reported in Table 6. None of the estimated jumps and

kinks are statistically significant, indicating that the smoothness conditions are plausible and hence

the RD design is still valid, even though LIA is violated.

6 Conclusions

This paper shows that given a discontinuity in the treatment probability and monotonicity, identi-

fication of LATE in RD designs can be established under just smoothness conditions, in particular
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Table 6 Smoothness of Covariate Means and Density of 1st-semester GPA

Jump Kink

Male -0.007 (0.019) -0.084 (0.220)

Black -0.004 (0.010) 0.035 (0.075)

Hispanic 0.010 (0.013) 0.102 (0.172)

Top 25% of HS Class 0.013 (0.018) 0.085 (0.175)

Density of 1st-semester GPA 0.381 (0.369) -0.266 (1.646)

Note: CCT bias-corrected intercept and slope change estimates are re-

ported; Robust standard errors are in parentheses. The bin size used to

generate the empirical density is .006.

smoothness of conditional means of potential outcomes for each type of individuals (always takers,

never takers and compliers) and smoothness of individual types. This paper also provides an empir-

ically plausible weak behavioral assumption, in the spirit of Lee (2008), that leads to the required

smoothness. Results in this paper formally justify using McCrary’s (2008) density test to evaluate the

validity of fuzzy design RD models.

Except for its empirical relevance, the smoothness condition can be theoretically important, par-

ticularly in cases where one needs to incorporate fully treatment effect heterogeneity or how the

treatment effect changes with respect to the running variable (which underlies, e.g., the bias correc-

tion and robust inference in Calonico, Cattaneo and Titiunik, 2014). Lastly using the data from Lee

(2008 and the confidential THEOP data, I show that in both cases the RD designs are valid, since

the smoothness assumptions plausibly hold, even though the local independence assumption may not,

given smoothness.

7 Appendix

Proof of Lemma: For simplicity, assume that y0i and y1i are continuous, though analogous analysis

can be done when y0i and y1i are discrete. The following discussion applies to zi = z ∈ (z0−ε, z0+ε)

for some small ε > 0. Let f·(·) and f·|· (·) denote the unconditional and conditional probability
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density or mass functions, respectively. In particular, let fw|z(w | z) denote the mixed joint density of

wi conditional on zi = z, i.e., fw|z(w | z) = fy0,y1,z|ψ(y0, y1, z | ψ i = ψ)Pr(ψ i = ψ)/ fz(z).

Assumption A1a states that fz|w(z | w) is continuous in z, and fz(z) is continuous and strictly

positive at z = z0. By Bayes’ Rule, fw|z(w | z) = fz|w(z | w) fw(w)/ fz(z), so fw|z(w | z) is con-

tinuous in z at z = z0. By definition wi := (y0i , y1i , ψ i ), then probability of each type of individual

Pr(ψ i = ψ | zi = z) =
∫
�1

∫
�0

fw|z(w | z)dy0dy1 for ψ i = ψ ∈ {A, N ,C} is continuous in z at

z = z0, where �t is the conditional support of yti for t = 0, 1 conditional on zi = z.

By Bayes’ Rule, fy0,y1|ψ,z(y0, y1 | ψ i = ψ, zi = z) = fw|z(w | z)/Pr(ψ i = ψ | zi = z) for

ψ i = ψ ∈ {A, N ,C}. Both fw|z(w | z) and Pr(ψ i = ψ | zi = z) are continuous in z at z = z0, so

fy0,y1|ψ,z(y0, y1 | ψ i = ψ, zi = z) for ψ i = ψ ∈ {A, N ,C} is continuous in z at z = z0. It follows

that type-specific conditional means of potential outcome E(yti | ψ i = ψ, zi = z) for t = 0, 1,and

ψ i = ψ ∈ {A, N ,C} are continuous in z at z = z0.

Proof of Theorem: Given assumptions A1a and A3 as well as the definitions of individual types,

we have

y+ = lim
e→0

E
[
yi | zi= z0+ε

]
= lim

ε→0
E
[
αi + β i xi | zi= z0+ε

]
= limε→0 E

[
αi | zi= z0+ε, xi = 0

]
Pr
[
xi = 0 | zi= z0+ε

]
+ limε→0 E

[
αi + β i | zi= z0+ε, xi = 1

]
Pr
[
xi = 1 | zi= z0+ε

]
= E

[
αi | zi= z0, x1i = 0

]
Pr
[
x1i = 0 | zi= z0

]
+E

[
αi + β i | zi= z0, x1i = 1

]
Pr
[
x1i = 1 | zi= z0

]
= E

[
αi | zi = z0, ψ i = N

]
Pr
[
ψ i = N | zi= z0

]
+E

[
αi + β i | zi = z0, ψ i = C

]
Pr
[
ψ i = C | zi= z0

]
+E

[
αi + β i | zi = z0, ψ i = A

]
Pr
[
ψ i = A | zi= z0

]
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where the fourth equality follows from definition of potential treatment status x0i and x1i , which

are implicit functions of the running variable, the fifth equality follows from monotonicity, the six

equality follows from definitions of types, and the last equality follows from continuity of conditional

means of potential outcomes for each type of individuals and continuity of probabilities of individual

types at z = z0.

Similarly we have

y− = lime→0 E
[
yi | zi= z0−ε

]
= limε→0 E

[
αi + β i xi | zi= z0−ε

]
= E

[
αi | zi= z0, ψ i = N

]
Pr
[
ψ i = N | zi= z0

]
+E

[
αi | zi= z0, ψ i = C

]
Pr
[
ψ i = C | zi= z0

]
+E

[
αi + β i | zi= z0, ψ i = A

]
Pr
[
ψ i = A | zi= z0

]
.

Therefore,

y+ − y− = E
[
β i | zi= z0, ψ i = C

]
Pr
[
ψ i = C | zi= z0

]
.

In addition,

x+−x− = lim
ε→0

E
[
xi | zi= z0+ε

]
− lim
ε→0

E
[
xi | zi= z0−ε

]
= E

[
x1i | zi= z0

]
−E

[
x0i | zi= z0

]
= Pr

[
ψ i = C | zi= z0

]
+Pr

[
ψ i = A | zi= z0

]
−Pr

[
ψ i = A | zi= z0−ε

]
= Pr

[
ψ i = C | zi = z0

]
,

where the third equality follows from monotonicity, the fourth equality follows from definitions of

types and continuity of probability of each type at zi = z0.

By A2, x+ − x− 6= 0, so putting the above equations together gives

E
[
y1i − y0i | zi = z0, ψ i = C

]
=

y+ − y−

x+ − x−
.
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