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Abstract

This paper discusses testable implications of rank invariance or rank similarity,
assumptions that are common in program evaluation and quantile treatment effect
(QTE) models. We nonparametrically identify and test the counterfactual distribution
of individual potential ranks, or features of the distribution. The tests allow treat-
ment to be endogenous, while essentially not requiring any additional assumptions
other than those used to identify and estimate QTEs. We focus on testing ranks in
the unconditional distribution of potential outcomes, and briefly discuss testing for
invariance or similarity of conditional ranks. The proposed tests are applied to the
JTPA training program and Project STAR. In the former application, we investigate
whether job training causes individuals to systematically change their ranks in the
earnings distribution. In the latter, we analyze the impacts of attending small classes
and having teacher aides on the gender performance gap in early childhood education;
also investigated is how these educational treatments interact with teacher experience
in affecting students’ relative performance.
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1 Introduction

In the last decade or so, the program evaluation literature has increasingly sought to identify

and estimate distributional effects. This trend reflects growing awareness that program im-

pacts can be heterogeneous, and many interesting questions regarding the political economy
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of any program require knowledge of the distribution. Recent examples include Heckman,

Smith, and Clements (1997), Bitler, Gelbach, and Hoynes (2006, 2008), Dammert (2008),

Djebbari and Smith (2008), Eren and Ozbeklik (2014), and Bitler and Hoynes (2014). These

studies show that there can be substantial heterogeneity in the program effects and that

a focus on mean effects may mask meaningful, and policy-relevant, heterogenous impacts

across the outcome distribution.

The distributional effects of a program may be of interest in their own right. Empirical

researchers have long recognized that without rank preservation, the distributional effects

are not equivalent to the distribution of program impacts. Rank preservation requires that

an individual’s potential rank remains the same regardless of being treated or not. This is

also known as rank invariance in the quantile treatment effect (QTE) literature. Without

such an assumption, it is possible that the differences of the potential outcome distributions

at any quantiles are zero, but due to individuals moving up and down in the distribution,

the true treatment effects are not zero.

Knowledge of the distribution of program impacts can be important from the policy per-

spective. Heckman, Smith, and Clements (1997) note that undesirable distributional aspects

of programs cannot always be offset by transfers governed by a social welfare function. Some

outputs of programs (such as test scores, other forms of human capital or non-transferable

payments in kind) simply cannot be valued, summed, and then redistributed. Consequently,

one may wish to know whether a welfare program helps some individuals as well as that it

does not hurt others. To gain insight into the distribution of program impacts for a training

program, Heckman, Smith, and Clements (1997) explore the rank preservation assumption

and find that it is not plausible.

Rank preservation or rank invariance requires an individual’s rank in the potential out-

come distribution to be the same across treatment states (Doksum, 1974; Lehmann, 1974),

while rank similarity only requires that an individual’s potential rank has the same probabil-
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ity distribution (Chernozhukov and Hansen, 2005). In various QTE models, rank invariance

or the less restrictive condition rank similarity is required either for the identification or the

interpretation of the identified treatment effects. There is a growing literature on identifi-

cation and estimation of QTEs since the pioneering work of Koenker and Bassett (1978)1.

For example, Chernozhukov and Hansen (2005, 2006, 2008) instrumental variable quantile

regression (IVQR) model restricts the evolution of individual ranks across treatment states

and thereby identifies QTEs for the whole population. Rank invariance or less restrictively

rank similarity is one of the key identifying assumptions. Similarly, the nonparametric IV

quantile regression models of Chernozhukov, Imbens, and Newey (2007) and Horowitz and

Lee (2007) implicitly impose rank invariance by imposing a scalar disturbance. In contrast,

the LQTE framework of Abadie, Angrist, and Imbens (2002) permits essential heterogeneity

in treatment effects by not restricting how individuals’ ranks change across treatment states

and, therefore, identifies QTEs only among compliers. Frolich and Melly (2013) adopt the

LQTE framework to identify unconditional QTEs while allowing for covariates. Rank in-

variance is not required for identification in the LQTE framework but is still required for the

interpretation of the identified QTEs as individual causal effects. The same holds true for

other studies that identify QTEs as horizontal differences of the marginal distributions of po-

tential outcomes in different treatment states (see, e.g., Firpo, 2007 or Imbens and Newey,

2009). Comparison between the LQTE framework and the IVQR model can be found in

Wüthrich (2014).

In light of their empirical and theoretical importance, this paper discusses testable im-

plications of rank invariance or rank similarity and proposes nonparametric tests for rank

similarity. The same test also works for rank invariance. The discussion focuses on indi-

1See, for recent examples, Chesher (2003, 2005) for identification of quantile effects in nonseparable
models with endogeneity; Firpo (2007) for estimation of unconditional QTEs under the unconfoundedness
assumption; Frolich and Melly (2013), for estimation of unconditional LQTEs, Firpo, Fortin, and Lemieux
(2007) for identification of the effect of a marginal change in an exogenous explanatory variable on the
unconditional quantiles of an outcome; Rothe (2010) and Imbens and Newey (2009) for identification and
estimation of unconditional QTEs of a continuous endogenous treatment; and Powell (2014) for estimation
of unconditional QTEs in a general framework.
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viduals’ ranks in the unconditional distribution of potential outcomes, which are arguably

more policy relevant. For example, welfare of the unconditionally poor or performance of

the unconditionally lower-ranking students attracts more public attention than, say, welfare

of highly educated people with relatively low wages or performance of relatively low-ranking

students from high-income families. Heckman, Smith, and Clements (1997), Bitler, Gelbach,

and Hoynes (2006, 2008), Bitler and Hoynes (2014), and Eren and Ozbeklik (2014) are some

of the recent empirical studies that look at the unconditional QTEs of active labor market

programs. Recent theoretical papers focusing on identification and estimation of uncondi-

tional QTEs include Firpo (2007), Firpo, Fortin, and Lemieux (2007), Rothe (2010), Imbens

and Newey (2009), and Frolich and Melly (2013). Testing for unconditional distributional

effects is discussed in Abadie (2002). In addition to the benchmark tests on unconditional

ranks, we also discuss testing invariance or similarity of conditional ranks. Such tests can be

useful when one is interested in sub-group distributional effects.

At first, one may think that testing for rank invariance or similarity is not feasible since

the same individual cannot be observed under treatment and also under no treatment. Let

Y1 and Y0 be the potential outcome under treatment and no treatment, respectively. It is

well known that without functional form restrictions, one cannot identify the joint distri-

bution of Y0 and Y1. This makes a direct test for rank invariance or similarity seemingly

impossible. Bitler, Gelbach, and Hoynes (2006, 2008) investigate plausibility of rank preser-

vation in their contexts by directly comparing covariate means at similar quantiles of the

outcome distribution between the treatment and the control group, given that treatment is

exogenous. See also Dammert (2008) for the same strategy. Empirical researchers focus on

rank preservation to justify the distributional effects as individual causal effects. Less well

known is that a weaker condition, rank similarity, can also guarantee that the distribution of

covariates is identical at the same quantile of the potential outcome distributions and hence

justify a causal interpretation of the quantile difference.
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Intuitively, rank similarity means that individuals with the same characteristics should

have the same probability distribution of potential ranks with or without treatment. We

therefore nonparametrically identify and test the counterfactual distribution of potential

ranks (or features of the distribution) among observationally equivalent individuals. That

is, our tests draw on implications of the conditional distribution of Y1 conditional on ob-

servable covariates as well as that of Y0 conditional on observable covariates. This is similar

to Bitler, Gelbach, and Hoynes (2006, 2008). We address endogeneity and summarize the

implied information into test statistics with well-behaved asymptotic distributions. In an

independent and contemporaneous work, Frandsen and Lefgren (2015) also leverage observ-

able covariates and propose a rank similarity test. They focus on a parametric test for the

equality of mean ranks under treatment and no treatment. In contrast, this paper focuses

on nonparametric identification and testing of the entire distribution of potential ranks.

Except for mild regularity conditions, the proposed tests do not require any additional

assumptions other than those used to identify and estimate QTEs (or LQTEs). The tests

allow treatment to be endogenous. Covariates are permitted in estimating the unconditional

QTEs, so the tests can handle instrumental variables regardless of whether they are valid

conditional on covariates or not. Note that although the frequently used constant treatment

effect models imply rank invariance, our tests do more than testing for constant treatment

effects. Rank invariance or rank similarity can hold even when treatment effects are fully

heterogenous. An obvious example of this is when Y1 is weakly monotonically increasing in

Y0. Note also that we do not view the proposed tests as tests for the identifying assumption

of the Chernozhukov and Hansen (2005, 2006, 2008) IVQR model or the nonparametric IV

quantile regression model of Chernozhukov, Imbens, and Newey (2007) and Horowitz and

Lee (2007), since these models impose rank invariance or similarity only after conditioning

on all relevant covariates.2

2Similarity or invariance of conditional ranks is more plausible when conditioning on a rich set of covari-
ates, as discussed in Chernozhukov and Hansen (2006). The proposed tests utilize the predictive power of
observable covariates for potential ranks. The tests can be useful in testing conditional ranks only when not
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Monte Carlo simulations show that the proposed tests have good size and power prop-

erties in finite samples. The tests are applied to two empirical applications. One focuses on

evaluating a large publically funded training program under the Job Training Partnership

Act (JTPA), and the other on analyzing a large-scale randomized experiment in education,

Project STAR. In the first empirical application, we show that rank similarity can be strongly

rejected for both male and female trainees. In contrast, falsification tests using age as the

outcome variable fail to reject rank similarity for either group. Further, while male trainees

systematically change their ranks throughout the earnings distribution, for female trainees,

ranks change mainly at the lower tail of the earnings distribution. Overall, the evidence sug-

gests that the impacts of the JTPA training program are more complicated than what would

be suggested by standard QTE estimates. One should, therefore, be cautious in equating

the distributional effects of training with the effects of training on individual trainees.

In the second empirical application, we find that attending a small class or having a

teacher aide is relatively more beneficial for boys than for girls and narrows the gender

gap in performance. We also find that small classes substantially narrow the performance

gaps among students taught by teachers with different levels of experience. The greatest

improvement is observed for students assigned to teachers with 6-10 years’ experience. On

the other hand, contrary to what one might believe, assigning a teacher aide to a ‘green-hand’

teacher is relatively inefficient and negatively affects students’ ranks.

The rest of the paper is organized as follows. Section 2 discusses testable implications

of rank invariance and rank similarity. Section 3 provides identification of the counterfac-

tual distribution of potential ranks and further the implied conditional moment restrictions

implied by rank similarity. Section 4 discusses the primary test statistic along with its

asymptotic distribution. Section 5 presents Monte Carlo simulations. Section 6 presents

the empirical applications. Section 7 discusses various extensions. Concluding remarks are

provided in Section 8.

all covariates are included in the conditioning set of the conditional QTEs.
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2 Testable Implications of Rank Invariance or Similarity

We first define rank invariance and rank similarity, and then discuss their testable impli-

cations. We focus on unconditional ranks, or individuals’ ranking in the unconditional

distributions of potential outcomes. Discussion of conditional rank invariance or similarity

is deferred to Section 7.

Let T be a binary treatment indicator that equals one if an individual is treated and

zero if not. Given potential outcomes Y1 and Y0, the observed outcome is then Y = Y0(1−

T ) + Y1T . We use Ft(.) : R → [0, 1] and qt(.) : [0, 1] → R to denote the unconditional

cumulative distribution function and unconditional quantile function of Yt for t = 0, 1.

Following Doksum (1974) and Lehmann (1974), unconditional QTEs are defined in this

paper as horizontal differences between the marginal distributions of potential outcomes.

Specifically, QTE(τ) = q1(τ)− q0(τ), for all τ ∈ [0, 1].

Let Ut = Ft (Yt) be potential ranks. Ut ∼ U (0, 1) for t = 0, 1 by construction. Un-

less stated otherwise, this paper uses rank invariance as well as rank similarity to refer to

conditions imposed on unconditional ranks.

Definition 1. Rank invariance is the condition U0 = U1.

Under rank invariance, U0 and U1 are the same random variable, so an individual’s

potential rank with or without treatment remains exactly the same. In practice, we never

observe both U0 and U1 for the same individual, so we do not actually know whether the

same individual remains at the same rank or not across treatment states. Let X be a vector

of observables and V be unobservables. V may be be a vector. The dimension of V does

not matter here. Suppose that for t = 0, 1, Yt = gt(X, V ) : W → R, where W is the

support of (X, V ). For example, Yt, t = 1, 0 could be potential earnings with or without

training, X could be education and demographic characteristics, and V could be ability.

Ut = Ft (gt(X, V )) is then a function that maps from W to [0, 1] and is deterministic given
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X and V . Rank invariance holds if and only if U0 | (X = x, V = v) = U1 | (X = x, V = v)

for all (x, v) ∈ W . Immediately rank invariance implies U0 | (X = x) ∼ U1 | (X = x) for all

x ∈X , where X is the support of X.

Rank invariance may be restrictive in practice. Consider the following thought exper-

iment. A test is given to a random sample of students and a cloned sample that consists

of the same students. The outcome of interest is the test score. The treatment is simply

the cloning indicator, so treatment effects are (supposed to be) zero for everyone. However,

due to random chance or luck, a student and her clone may not have the same test score or

same rank in the test score distribution. Nevertheless, if we repeat this experiment infinitely

many times, the student and her clone will have the same distribution of ranks and hence

any features (e.g. mean, median) of their rank distributions will be the same.3

Rank similarity relaxes rank invariance by allowing for random deviations, or “slippages”

in one’s rank away from some common level, so that the exact rank for an individual may

not be the same in different treatment states (Chernozhukov and Hansen, 2005). Assume

that for t = 0, 1, Yt | X = x, V = v and hence Ut | X = x, V = v is not deterministic

as in the case of rank invariance. In particular, let Yt = gt(X, V, St), where X and V

are observables (education or demographic characteristics) and unobservables (ability) that

determine the common rank level of an individual, and St (e.g. luck) is an idiosyncratic

shock. St is responsible for random slippages from the common rank level in the treatment

state t. Note that Yt = gt(X, V, St) is a representation rather than a real restriction. The

difference between St and V is that unlike V , St is realized only after the treatment is chosen.

If one were to specify a treatment model, then V would enter the treatment model while

St would not. Similar to Chernozhukov and Hansen (2005), we also “...implicitly make the

assumption that one selects the treatment without knowing the exact potential outcomes...”

Rank similarity can then be analogously defined as follows.

3Note that luck is plausibly mutually i.i.d for each student and her clone.
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Definition 2. Rank similarity is the condition U0 | (X = x, V = v) ∼ U1 | (X = x, V = v)

for any (x, v) ∈ W.

Instead of requiring that U0 and U1 are the same random variable, rank similarity just

assumes that the conditional distributions of U0 and U1, conditional on X and V , are the

same. Chernozhukov and Hansen (2005) consider a weaker condition, conditional rank sim-

ilarity, which assumes that conditional ranks conditional on observables X are identically

distributed across treatment status conditional on X and unobservables (V here).4

Rank invariance is a special case of rank similarity, where St is a null set of random

variables and the distribution of Ut | X, V is degenerate. Rank invariance implies that the

QTE at the τ quantile is the individual treatment effect for anyone who is at quantile τ . It

is worth clarifying what rank similarity implies. The following discussion focuses on rank

similarity. All the conclusions hold trivially for rank invariance.

Lemma 1. 1. Given rank similarity, FX,V |U0(x, v|τ) = FX,V |U1(x, v|τ), for all τ ∈ (0, 1)

and (x, v) ∈ W.

2. Given rank similarity, E [Y1 − Y0|X = x, V = v] =
∫ 1

0
QTE(τ)dFU |X,V (τ |x, v) for all

(x, v) ∈ W, where QTE(τ) ≡ q1(τ) − q0(τ) and FU |X,V (.|x, v) ≡ FUt|X,V (.|x, v) for

t = 0, 1 and all (x, v) ∈ W.

3. (Main Testable Implication) Given rank similarity, FU0|X(τ |x) = FU1|X(τ |x) for all

τ ∈ (0, 1) and x ∈ X .

Lemma 1 summarizes several implications of rank similarity. The proof is given in the

appendix. The first part of the lemma says that given rank similarity, the distribution of

4Unconditional rank similarity implies conditional rank similarity. To see the difference between the two
more clearly, by the Skorohod representation of potential outcomes, one can write Yt = q(t, Ut), where q(t, Ut)
is the quantile function of Yt, e.g., q(t, τ) is τ unconditional quantile of Yt. Ut is then the unconditional
potential rank when T = t. In contrast, Chernozhukov and Hansen (2005, 2006, 2008) define the conditional

rank using Yt ≡ q(t,x, Ũt), so Ũt, a function of V and St, represents the conditional rank conditional on

X = x. Ũt is responsible for the heterogeneity of outcomes among individuals with the same observed
characteristics X =x and treatment state t. Their rank invariance then requires Ũ0 = Ũ1 conditional on X,
while their rank similarity requires Ũ0 ∼ Ũ1 conditional on X and the treatment model unobservables V .
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observable and unobservable covariates is the same at the same quantile of the potential

outcome distribution with or without treatment. The statement follows from the definition

of rank similarity and the Bayes’ rule. This result implies that comparing the same quantile

of the marginal distributions of Y1 and Y0 is a comparison on average made for the same

underlying individuals characterized by X and V .

The second part of the lemma states that for any individual defined by observables

X = x and unobservables V = v, her average treatment effect is a weighted average of the

unconditional QTEs, where the weights are the individual’s probabilities of being at different

quantiles. It is known that under rank similarity, one loses the ability to point identify

treatment effects for particular individuals, or Y1 − Y0|X = x, V = v (see, e.g., Imbens and

Newey, 2009). This result of Lemma 1.2 implies that under rank similarity, one may instead

identify individual expected treatment effects, providing that one can identify FU |X,V (.|.).

In practice, given rank similarity, individual expected treatment effects, rather than exact

treatment effects, may be of greater policy interest, since the random shock St, luck or any

counterpart of it, is not manipulable by nature.

Identification of individual expected treatment effects relies on researchers’ ability to

identify the QTEs and the individual’s probability distribution of ranks. The next section

provides identification of the potential rank distribution among observationally equivalent

individuals, under essentially the same conditions as those used for identifying QTEs (or

LQTEs). Further, if unobservables do not play a role in determining potential ranks, i.e.

FUt|X,V (.|x, v) = FUt|X(.|x) ≡ FUt|X(τ |x) for t = 0, 1, then one can point identify an in-

dividual’s expected treatment effect under rank similarity as E [Y1 − Y0|X = x, V = v] =∫ 1

0
(q1(τ)− q0(τ)) dFU |X(τ |x). Otherwise, bounds might be constructed, depending on as-

sumptions on unobservables.

The last part of Lemma 1 is what we focus on. It follows immediately from the definition

of rank similarity. It states that the distribution of potential ranks among those with X = x
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are the same across treatment states. In other words, under rank similarity, treatment should

not affect the distribution of ranks for observationally equivalent individuals.

Note that this testable implication of rank similarity in Lemma 1 only considers observ-

ables. It is a necessary but not sufficient condition for rank similarity. Below we provide

an assumption under which the testable implication is also a sufficient condition for rank

similarity.

Assumption 1. FV |X,U0(v|x,τ) = FV |X,U1(v|x,τ) for all τ ∈ (0, 1) and x ∈ X .

Assumption 1 assumes that conditional on observables X, the distribution of unobserv-

ables is the same at the same rank of the potential outcome distribution. Alternatively,

the assumption states that once the distribution of the observables is the same at the

same potential rank, the distribution of unobservables will also be the same. Note that

if unobservables do not play a role in determining potential ranks, i.e., FUt|X,V (τ |x,v) =

FUt|X(τ |x) for t = 0, 1, it follows straightforwardly that rank similarity holds if and only

if FU0|X(τ |x) = FU1|X(τ |x). However, Assumption 1 does not assume away unobservables,

i.e., Assumption FV |X,U0(.|x,τ) = FV |X,U1(.|x,τ) for all τ ∈ (0, 1) and x ∈ X does not imply

FUt|X,V (.|x,v) = FUt|X(.|x) for both t = 0, 1 and (x, v) ∈ W .

Assumption 1 resembles in spirit the unconfoundedness assumption that is popular in

program evaluation, e.g., in various matching estimators (Rubin, 1990). Assumption 1 is

essentially not testable, just like unconfoundedness.

Lemma 2. Given Assumption 1, rank similarity holds if and only if FU0|X(τ |x) = FU1|X(τ |x)

for all τ ∈ (0, 1) and x ∈ X .

Given Assumption 1, for all τ ∈ (0, 1) and x ∈ X , FX,V |U0(x,v|τ) = FX,V |U1(x,v|τ) if and

only if FX|U0(x|τ) = FX|U1(τ |x). Then, by Bayes’ rule FU0|X,V (τ |x, v) = FU1|X,V (τ |x,v) if and

only if FU0|X(τ |x) = FU1|X(τ |x). It follows that FU0|X(τ |x) = FU1|X(τ |x) for all τ ∈ (0, 1)

and x ∈ X is not only a necessary but also a sufficient condition for rank similarity.
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Note that without Assumption 1, a test based on the testable implication in Lemma 1

can only detect whether observationally equivalent individuals have the same distribution of

potential ranks under treatment and no treatment. Further if identification is only feasible

for compliers or one is only interested in compliers, Assumption 1 can be made conditional

on compliers and hence we have that Corollary 2 holds among compliers.

3 Identification

For any τ ∈ (0, 1) and x ∈ X , FU1|X(τ |x)−FU0|X(τ |x) is a measure of the difference between

the conditional distributions of potential ranks under treatment or no treatment. Intuitively,

this shows how the probability of staying at the same rank changes with treatment among

those with X = x. This section discusses identification of FUt|X(τ |x) for t = 0, 1 and hence

FU1|X(τ |x)− FU0|X(τ |x), which serves as the basis for the proposed tests.

3.1 Exogenous Treatment

If T is exogenous, as in randomized experiments with perfect compliance, identification of

FUt|X(τ |x) for t = 0, 1 is trivial. In this case for any τ ∈ [0, 1] and x ∈ X , we have

FUt|X(τ |x) = E [1(Ut ≤ τ)|X = x] = E [1(Yt ≤ qt(τ)|X = x]

= E [1(Y ≤ qt(τ))|X = x, T = t] ,

where qt(τ) for t = 0, 1 is directly identified from the sub-samples with T = t. Our emprical

application of Project STAR illustrates this case.

3.2 Endogenous Treatment

When T is endogenous, a valid IV is required to identify QTEs and further the impact of

treatment T on the distribution of ranks given X. We adopt the LQTE framework. The

LQTE identifying assumption is particularly suitable for our empirical application using the

training data from the JTPA program (see discussion in Abadie, Angrist and Imbens 2002).
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The LQTE framework permits essential heterogeneity in treatment effects and identifies dis-

tributional effects for compliers only, which are the largest sub-population for which QTEs

can be point identified. Testing for rank similarity is then only relevant to compliers. How-

ever, if assumptions are made to identify unconditional QTEs for the whole population, one

could analogously test for rank similarity for the whole population. For example, assuming

unconfoundedness, one could adopt the estimator in Firpo (2007) to estimate unconditional

QTEs for the whole population and then test for rank similarity for the whole population.

As is clear from Theorem 1 and its proof, essentially what is required is a valid IV (or the

unconfoundedness assumption) that allows the identification of unconditional QTEs in the

first stage and then the effect of treatment on the distribution of ranks in the second stage.

Let Z be an IV for the endogenous treatment T . For simplicity, assume that the in-

strument Z takes on two values, 0 and 1, although identification does not rely on a binary

IV. Further, let Tz be the potential treatment status if Z = z. The observed treatment

status can then be written as T = T0(1 − Z) + T1Z. Define compliers as individuals with

T1 > T0 (Angrist, Imbens, and Rubin, 1996), and let C denote the set of compliers. Define

the distribution function of the potential outcome among compliers as

Ft|C(y) = Pr[Yt ≤ y|T1 > T0] for t = 0, 1.

We are interested in testing for rank similarity among compliers. For notational conve-

nience, unless stated otherwise we use Ut to refer to potential ranks among compliers only,

i.e., Ut ≡ Ut|C = Ft|C(Yt) for t = 0, 1. Let XC = {x ∈ X : Pr [T1 > T0|X = x] > 0}. Similar

to the last part of Lemma 1, rank similarity among compliers implies

FU1|C,X(.|x) = FU0|C,X(.|x) for all x ∈ XC .

Note that FUt|C,X(.|x) for t = 0, 1 is only defined on x ∈ XC , and that values x ∈ XC
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represent compliers’ observable characteristics, even though individuals with X = x ∈ XC

are not necessarily all compliers. The above condition states that the distribution of potential

(complier) ranks remains the same across treatment states among compliers with the same

observed characteristics. The following gives the identifying assumption for FUt|C,X(.|x) for

both t = 0, 1 and all x ∈ XC .

Assumption 2. Let (Yt, Tz, X, Z), t, z = 0, 1 be random variables mapped from the common

probability space (Ω,F,P). The following conditions hold jointly with probability one.

1. Independence: (Y0, Y1, T0, T1) ⊥ Z|X.

2. First stage: E(T1) 6= E(T0).

3. Monotonicity: Pr(T1 ≥ T0) =1.

4. Nontrivial assignment: 0 < Pr (Z = 1|X = x) < 1 for all x ∈ X .

Assumption 2 is the standard LQTE identifying assumption used in Abadie, Angrist,

and Imbens (2002) and Abadie (2003), except that we allow for a weaker first stage. In

particular we require E(T1) 6= E(T0) to hold without conditioning on X, so compliers do

not have to exist at every value of X. This is because we test whether rank similarity is

violated at any values of X and because we identify and estimate the unconditional QTE

instead of conditional QTE (for the latter point, see the discussion in Frolich and Melly

2013). Assumption 2.1 subsumes two related requirements: exclusion restriction and IV

independence of the first stage error (Angrist, Imbens, and Rubin, 1996). Assumption 2.3

rules out defiers, which can be weakened by the assumption that there are conditionally more

compliers than defiers (see, e.g., de Chaisemartin, 2014). Assumption 2.4 is also known as a

common support assumption requiring Supp (X|Z = 0) = Supp(X|Z = 1).5

5Vytlacil (2002) establishes equivalence of these independence and monotonicity assumptions to a latent
index threshold-crossing model.
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When Z is a random assignment of the treatment, as in our empirical application, the

independence restriction is valid without conditioning on covariates X; however, including

covariates can remove any chance association between T and X or improve efficiency (Frolich

and Melly, 2013). Let qt|C(τ) for t = 0, 1 be the τ quantile of Yt distribution among compliers.

Theorem 1. Let I(τ) ≡ 1
(
Y ≤

(
Tq1|C(τ) + (1− T ) q0|C(τ)

))
. Given Assumption 2, for all

τ ∈ (0, 1), x ∈ XC, and t = 0, 1, FUt|C,X(τ |x) is identified and is given by

FUt|C,X(τ |x) =
E [I(τ)1 (T = t) |Z = 1,X = x]− E [I(τ)1 (T = t) |Z = 0,X = x]

E[1 (T = t) |Z = 1,X = x]− E[1 (T = t) |Z = 0,X = x]
. (1)

FU1|C,X(.|x) = FU0|C,X(.|x) for x ∈ XC if and only if for all τ ∈ (0, 1) and x ∈ X

E [I(τ)|Z = 1,X = x] = E [I(τ)|Z = 0,X = x] . (2)

I(τ) is referred to as a rank indicator. T is binary, so I(τ) can also be written as

I(τ) = 1
(
Y ≤ q1|C(τ)

)
T + 1

(
Y ≤ q0|C(τ)

)
(1− T ). Equation (2) in Theorem 1 states that

given rank similarity, the instrument Z has no impact on the distribution of ranks conditional

on X = x. Equation (2) is a necessary condition for rank similarity. Further if Assumption

1 holds, it will be a necessary and sufficient condition for rank similarity.

Note that although the conditional distribution FUt|C,X(.|x) is only defined for x ∈ XC ,

under rank similarity equation (2) holds for all values of x ∈ X , since it holds trivially for

any x ∈ X/XC . Theorem 1 nests exogenous treatment as a special case, as in this case,

Z = T and everyone is a complier.

qt|C(τ) for t = 0, 1 is identified following Frolich and Melly (2013). In particular, given

Assumption 2, they can be identified as the inverse function of Ft|C(y), where Ft|C(y) is given

by

Ft|C(y) =

∫
X E (1(Y ≤ y)1(T = t)|Z = 1,X)− E (1(Y ≤ y)(T = t)|Z = 0,X) dFX∫

X E (T = t|Z = 1,X)− E (T = t|Z = 0,X) dFX

.
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Alternatively, they can be identified by minimizing a weighted check function

(
q0|C(τ), q1|C(τ)

)
= arg min

q0,q1
E [ρτ (Y − q0(1− T )− q1T )ω] ,

where ρτ (u) = u (τ − 1(u < 0)) is the standard check function, ω =
(

Z
π(X)
− 1−Z

1−π(X)

)
(2T − 1)

and π (X) = Pr (Z = 1|X) is the instrument probability.

Theorem 1 suggests that one can test for rank similarity by a two-step procedure: first

estimate the unconditional quantiles q0|C(τ) and q1|C(τ), and then test whether Equation

(2) in Theorem 1 holds for all τ ∈ (0, 1) and x ∈ X , replacing q0|C(τ) and q1|C(τ) with

their estimates. If desired, one can also test a particular quantile or a subset of quantiles

of interest. Features of the potential rank distribution, such as the median rank or the

mean rank can also be tested. Similar to Abadie, Angrist, and Imbens (2002) in testing for

distributional treatment effects in IV models, we test the reduced form Equation (2) rather

than Equation (1). Upon rejection of rank similarity, researchers can further utilize Equation

(1) to quantify the degree of violation in rank similarity at different values of τ and x.

In practice, one needs the covariates X to be non-trivial, i.e., Ft|C,X (x) = Ft|C does not

hold for both t = 0, 1 and all x ∈ XC , in order for a test based on Equation (2) to have any

power. If Ft|C,X (x) = Ft|C for both t = 0, 1 and all x ∈ XC , then Equation (2) would always

hold by construction.6

3.3 Testing the Moments of Potential Ranks

Instead of testing whether the distribution of potential ranks remains the same across treat-

ment states, one may also test any functionals of the potential rank distribution. Recall that

rank similarity among compliers implies that for all x ∈ XC , FU1|C,X(.|x) = FU0|C,X(.|x).

6That is because if Ft|C,X(qt|C(τ)|x) = Ft|C(qt|C(τ)), Ft|C,X(qt|C(τ)|x) = τ . Then the testable implication
of rank similarity holds by construction, and hence Equation (2) holds by construction.
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This further implies that, for instance,

E[Up
1 |C,X = x] = E[Up

0 |C,X = x],

for all x ∈ XC and some p > 0. When p = 1, this equation represents equality of the mean

potential ranks. One can similarly test any higher order raw moments.

Let U ≡ TU1 + (1− T )U0 =
∫ 1

0
1
((
Tq1|C(τ) + (1− T )q0|C(τ)

)
< Y

)
dτ = 1−

∫ 1

0
I(τ)dτ .

U is identified because I(τ) is identified. Analogous to Theorem 1, one can test whether the

instrument Z has an impact on the conditional moments of potential ranks conditional on

X, i.e., test whether

E [Up|Z = 1,X = x] = E [Up|Z = 0,X = x]

for some p > 0 holds for all x ∈ X . In addition, the change in the conditional moments of

potential ranks for compliers with X = x ∈ XC is identified by

E[Up
1 |C,X = x]− E[Up

0 |C,X = x] =
E [Up|Z = 1,X = x]− E [Up|Z = 0,X = x]

E [T |Z = 1,X = x]− E [T |Z = 0,X = x]
.

4 Testing

This section discusses the test statistic along with its asymptotic properties, given the iden-

tification results in the previous section. Treatment is endogenous here, with exogenous

treatment following as a special case. X is assumed to be discrete with finite support. Con-

tinuous covariates are considered in Section 7. Discrete X with finite support is a reasonable

assumption, since typically one has a limited number of covariates and one can always dis-

cretize covariates.
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4.1 The Distributional Test for Rank Similarity

Null Hypothesis and Test Statistic

Denote the support of X as X = {x1,x2, ...,xJ} for some finite positive integer J . Let

Ω = {τ 1, τ 2, ..., τK} be a set of unconditional quantiles of interest.7 Recall that I(τ) =

1
(
Y ≤

(
Tq1|C(τ) + (1− T ) q0|C(τ)

))
. For any j = 1, ..., J and k = 1, ..., K, define for z =

0, 1

mz
j(τ k) = E [I (τ k) |Z = z,X = xj] .

We are interested in the null hypothesis

H0 : m0
j(τ k) = m1

j(τ k), for all j = 1, ..., J − 1 and k = 1, ..., K.

Only J − 1 values of X are included in the null hypothesis, since
∑J

j=1m
z
j(τ) = 1 for any

τ ∈ (0, 1) and z = 0, 1.

Let {Yi, Ti, Zi,Xi}ni=1 be a sample of i.i.d. draws of size n from (Y, T, Z,X), and Ii(τ) =

1
(
Yi ≤

(
Tiq1|C(τ) + (1− Ti) q0|C(τ)

))
be the rank indicator for individual i. If the uncondi-

tional quantiles q0|C(τ k) and q1|C(τ k) were known, the conditional expectation mz
j(τ k) can

be estimated by the proportion of individuals with Ii(τ k) = 1 in the subs-ample with Zi = z

and Xi = xj. However, q0|C(τ k) and q1|C(τ k) are unknown, so we have to estimate them

first. Here we adopt the
√
n-consistent estimator proposed in Frolich and Melly (2013).

The estimator has the advantage of estimating unconditional quantiles but still allowing for

covariates. Denote the corresponding estimates as q̂0|C(τ k) and q̂1|C(τ k). We have

(
q̂0|C(τ k), q̂1|C(τ k)

)
= arg min

q0,q1

1

n

n∑
i=1

ρτk(Yi − q0(1− Ti)− q1Ti)ω̂i,

7The proposed test can be extended to test for rank similarity over a continuous range of quantiles. In
that case, the limiting distribution in Theorem 2 becomes a centered Gaussian process. Then, a Kolmogorov-
Smirnov-type L∞-norm test could be constructed. We do not pursue this route here because the asymptotics
become quite complicated and obtaining numerical critical values in such a case is computationally demand-
ing. Also, standard empirical practice is just to consider a finite set of quantiles.
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where ω̂i =
(

Zi

π̂(Xi)
− 1−Zi

1−π̂(Xi)

)
(2Ti − 1) and π̂(xj) is a consistent estimator of the instrument

probability π(xj).
8 Given q̂0|C(τ k) and q̂1|C(τ k), the conditional expectation mz

j(τ k) for all

z = 0, 1, j = 1, ..., J − 1 and k = 1, ..., K can be estimated by

m̂z
j(τ k) =

1

nzj

∑
Zi=z,Xi=xj

1
(
Yi ≤

(
Tiq̂1|C(τ k) + (1− Ti)q̂0|C(τ k)

))
,

where nzj =
∑n

i=1 1(Zi = z,Xi = xj).

For j = 1, ..., J , let m̂z
j =

[
m̂z
j(τ 1) m̂z

j(τ 2) · · · m̂z
j(τK)

]′
and mz

j =
[
mz
j(τ 1) mz

j(τ 2) · · · mz
j(τK)

]′
be K × 1 vectors. Let m̂z =

[
(m̂z

1)′ (m̂z
2)′ · · · (m̂z

J−1)′
]′

and mz =
[
(mz

1)′ (mz
2)′ · · · (mz

J−1)′
]′

be K(J − 1) × 1 vectors. Let V̂ be a consistent estimator of the asymptotic variance-

covariance matrix of
√
n (m̂1 − m̂0 − (m1 −m0)). We propose to test the null hypothesis

H0 using a Wald-type test statistic

W ≡ n
(
m̂1 − m̂0

)′
V̂−1

(
m̂1 − m̂0

)
.

Asymptotics

To derive asymptotic properties of the nonparametric estimator m̂z
j(τ k) for all z = 0, 1,

j = 1, ..., J − 1 and k = 1, ..., K and those of the test statistic W , we make the following

assumptions regarding the underlying distribution of the data.

Assumption 3. 1. i.i.d. data: the data (Yi, Ti, Zi,Xi) for i = 1, ..., n is a random sample

of size n from (Y, T, Z,X).

2. For all τ ∈ Ω = {τ 1, τ 2, ..., τK}, the random variable Y1 and Y0 are continuously

distributed with positive density in a neighborhood of q0|C(τ) and q1|C(τ) in the subpop-

ulation of compliers.

3. For all j = 1, ..., J , π̂(xj) is consistent, or π̂ (xj)
p→ π (xj).

8The Stata command “ivqte” can be conveniently used to estimate q̂0|C(τk) and q̂1|C(τk). ω̂i in practice
is replaced by projected weights projected onto Y and T to make sure that the weights are nonnegative.
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4. Let fY |T,Z,X be the conditional density of Y given T , Z and X. For all t, z = 0, 1,

j = 1, ..., J and τ ∈ Ω, fY |T,Z,X(y|t, z,xj) has a bounded first derivative with respect to

y in a neighborhood of qt|C(τ).

5. Let fY |X(y|x) be the conditional density of Y given X. For all τ ∈ Ω and j = 1, ..., J ,

fY |X(y|xj) is positive and bounded in a neighborhood of qt|C(τ).

Assumptions 3.1-3.3 guarantee consistency of q̂0|C(τ k) and q̂1|C(τ k) for k = 1, ..., K. As-

sumption 3.4 and 3.5 ensure that the asymptotic variance-covariance matrix of m̂1 − m̂0 is

bounded and has full rank. Let ft|C be the density of potential outcome Yt among compliers,

pZ,X(z,xj) be the joint probability of Z and X, pT |Z,X(z,xj) be the probability of receiving

treatment given instrument status, and Pc = E[T |Z = 1]−E[T |Z = 0] be the proportion of

compliers. For all k = 1, ..., K, ft|C
(
qt|C(τ k)

)
> 0 by Assumption 3.2. By Assumptions 2.4,

pZ,X(z,xj) > 0 for all z ∈ {0, 1} and xj ∈ X , and Pc > 0 by Assumptions 2.2 and 2.3. The

following theorem discusses the asymptotic distribution of m̂1 − m̂0.

Theorem 2. Given Assumptions 2 and 3,

√
n
(
m̂1 − m̂0 −

(
m1 −m0

))
⇒ N(0,V)

where V is the K(J − 1)×K(J − 1) asymptotic variance-covariance matrix. The(∑J−1
j=1 K(j − 1) + k,

∑J−1
j′=1K(j′ − 1) + k′

)
-th element of V is equal to

E
[(
φ1
j(τ k)− φ0

j(τ k)
) (
φ1
j′(τ k′)− φ0

j′(τ k′)
)]

with

φzj(τ k) ≡φzj(τ k;Y, T, Z,X) =
I(τ k)−mz

j(τ k)

pZ,X(z,xj)
1(Z = z,X = xj)

−
fY |T,Z,X(q0|C(τ k)|0, z,xj)(1− pT |Z,X(z,xj))

Pcf0|C(q0|C(τ k))
ψ0(Y, T, Z,X)

−
fY |T,Z,X(q1|C(τ k)|1, z,xj)pT |Z,X(z,xj)

Pcf1|C(q1|C(τ k))
ψ1(Y, T, Z,X),

where ψ0(Y, T, Z,X) and ψ1(Y, T, Z,X) are defined in the proof of Theorem 7 in Frolich and
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Melly (2007), and are restated in the proof of this theorem in the Appendix.

The last two terms of φzj(τ k;Y, T, Z,X) come from the estimation error of q̂0|C(τ k) and

q̂1|C(τ k). If q0|C(τ k) and q1|C(τ k) were known, φzj(τ k;Y, T, Z,X) would reduce to
I(τk)−mz

j (τk)

pZ,X(z,xj)
1(Z =

z,X = xj) and hence the
(∑J−1

j=1 K(j − 1) + k,
∑J−1

j′=1K(j′ − 1) + k′
)

-th element of V is

equal to
m1

j (τk∧τk′ )−m1
j (τk)m1

j (τk′ )

pZ,X(1,xj)
+

m0
j (τk∧τk′ )−m0

j (τk)m0
j (τk′ )

pZ,X(0,xj)
if j = j′, and 0 if j 6= j′.

Given the above theorem, it follows immediately that with a consistent estimator V̂ for

the variance-covariance matrix V, the test statistic W converges to a Chi-squared distribu-

tion with K(J − 1) degrees of freedom under the null hypothesis, where K(J − 1) is the

number of moment restrictions in H0 as well as the rank of V given Assumption 3. Under

the alternative hypothesis, the test statistic W explodes. Due to the complicated nature of

the asymptotic variance-covariance matrix resulting from the first stage estimation of the

unconditional quantile functions, we recommend estimating V by bootstrapping. Note that

the set X is finite here. Section 7 discusses an extension that allows J to increase with

sample size. In that case, the estimation error of the unconditional quantile functions does

not play a role in the asymptotic distribution of the test statistic. The variance-covariance

matrix can be estimated analytically.

Let the critical value cα of the test be the (1−α)× 100-th percentile of the χ2(K(J − 1))

distribution. Define the decision rule of the test as

“reject the null hypothesis H0 if W > cα”.

The following Corollary summarizes the asymptotic properties of the proposed test.

Corollary 1. Given Assumptions 2 and 3, the proposed test satisfies

1. if H0 is true, limn→∞ P (W > cα) = α, and

2. if H0 is false, limn→∞ P (W > cα) = 1.
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Note that Assumption 3 guarantees that for all j = 1, ..., J − 1 and k = 1, ..., K,

φ1
j(τ k;Y, T, Z,X) − φ0

j(τ k;Y, T, Z,X) is not degenerate and hence the variance-covariance

matrix V has full rank. In practice with a finite sample, it is possible that for some small

cells defined by values of X and Z, both m̂1
j(τ k) and m̂0

j(τ k) are degenerate. In that case,

V̂ would not have full rank. The effective number of moment restrictions in H0 is then the

rank of V̂, which should be used as the degrees of freedom for the the test statistic.

4.2 The Mean Test for Rank Similarity

As is discussed in Section 3.3, rank similarity implies equality of conditional moments of

potential ranks. In this section we construct a mean test for rank similarity. Tests for other

moments of potential ranks can be constructed similarly and are omitted to save space.

Let m̄z
j = E[U |Z = z,X = xj] for z = 0, 1. One can test the null hypothesis

H0,mean : m̄0
j = m̄1

j , for all j = 1, ..., J − 1.

Let R(y, t) =
∫ 1

0
1
(
tq1|C(τ) + (1− t)q0|C(τ) ≤ y

)
dτ be the rank function such that U =

R(Y, T ). We use simulation to generate the rank function. In particular, let
(
τ 1, ...τS

)
be S

random numbers drawn from the uniform distribution U(0, 1) that are independent of the

data. The rank of any interior point y can be estimated by

R̂(y, t) =
1

S

S∑
s=1

1
((
tq̂1|C (τ s) + (1− t)q̂0|C (τ s)

)
≤ y
)
,

which converges to R(y, t) in probability as S, n→∞. Let Ûi = R̂(Yi, Ti) for i = 1, ..., n. For

z = 0, 1 and j = 1, ..., J , define the estimator of m̄z
j as

m̈z
j =

1

nzj

∑
Zi=z,Xi=xj

Ûi.

Let m̈z =
[
m̈z

1 m̈
z
2 · · · m̈z

J−1

]′
and m̄z =

[
m̄z

1 m̄
z
2 · · · m̄z

J−1

]′
be (J − 1) × 1 vectors.
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Given

m̄z
j = E

[∫ 1

0

1
((
Tq1|C(τ) + (1− T )q0|C(τ)

)
≤ Y

) ∣∣∣∣Z = z,X = x

]
=

∫ 1

0

(
1−mz

j(τ)
)
dτ ,

and

m̈z
j =

1

nzj

∑
Zi=z,Xi=xj

1

S

S∑
s=1

1
((
Tiq̂1|C (τ s) + (1− Ti)q̂0|C (τ s)

)
≤ Yi

)
=

1

S

S∑
s=1

(
1− m̂z

j(τ
s)
)
,

the asymptotic property of m̈1 − m̈0 can be readily derived following results of Theorem 2.

It is summarized in the following Corollary.

Corollary 2. Suppose that Assumption 3 holds for Ω = (0, 1). Given Assumptions 2 and 3,

under the null hypothesis m̄1 = m̄0, when S, n→∞

√
n
(
m̈1 − m̈0

)
⇒ N(0,Vmean),

where Vmean is the (J − 1) × (J − 1) asymptotic variance-covariance matrix. The (j, j′)-th

element of Vmean is E
[(∫ 1

0
φ1
j(τ)dτ −

∫ 1

0
φ0
j(τ)dτ

)(∫ 1

0
φ1
j′(τ)dτ −

∫ 1

0
φ0
j′(τ)dτ

)]
, where

∫ 1

0

φzj(τ)dτ =−
U − m̄z

j

pZ,X(z,xj)
1(Z = z,X = xj)

−
∫ 1

0

fY |T,Z,X(q0|C(τ)|0, z,xj)
f0|C(q0|C(τ))

dτ

(
1− PT |Z,X(z,xj)

)
ψ0(Y, T, Z,X)

Pc

−
∫ 1

0

fY |T,Z,X(q1|C(τ)|1, z,xj)
f1|C(q1|C(τ))

dτ
PT |Z,X(z,xj)ψ1(Y, T, Z,X)

Pc
.

Again, the last two terms of
∫ 1

0
φzj(τ)dτ come from the estimation error in the first-step
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estimation of q0|C(.) and q1|C(.).9 This corollary leads to the following Wald-type test statistic

Wmean ≡ n
(
m̈1 − m̈0

)′
V̈−1

(
m̈1 − m̈0

)
,

where V̈ is the estimated variance-covariance matrix. The test statistic Wmean converges

to a Chi-squared distribution with J − 1 degrees of freedom under the null hypothesis, and

explodes under the alternative. Therefore, to conduct the mean test for rank similarity at

the significance level α, one can reject H0,mean if Wmean exceeds the (1−α)×100-th percentile

of the χ2(J − 1) distribution.

Note that rank similarity is a distributional concept. In practice, the mean test, which

only tests a summary measure of the distribution, may have less power against different

alternatives.10 Results from both the Monte Carlo simulations and the JTPA application

confirms this point. However, the mean test can be useful when testing a large set of

quantiles is not practical due to, e.g., a small sample size (so one can easily exhaust degrees

of freedom).

5 Simulation

This section presents results from Monte Carlo simulations to illustrate the finite sample size

and power properties of the proposed tests. We study both the distributional test and the

mean test for rank similarity. We first consider exogenous treatment and then endogenous

treatment.

For all Monte Carlo simulations, the observed covariate X is generated to take on five

values with equal probability. In particular, Pr(X = 0.4j) = 0.2, for j = 1, ..., 5. The

unobserved covariate V and the idiosyncratic shocks S0 and S1 are generated as independent

random variables and V, S0, S1 ∼ N(0, 1). In addition, Y0 = X + V + S0, Y1 = X + 1 −

9If q0|C(.) and q1|C(.) were known,
∫ 1

0
φzj (τ)dτ would reduce to − U−m̄z

j

pZ,X(z,xj)1(Z = z,X = xj) and the

off-diagonal elements in matrix Vmean would reduce to zero.
10Note also that the mean test is not computationally simpler than the distributional test, due to the

estimation of each individual’s rank.
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Figure 1: Conditional distributions of potential ranks
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b=3

bXV + V + S1 and Y = Y0 (1− T ) + Y1T . When b = 0, rank is invariant to treatment by

construction; when b 6= 0, rank similarity does not hold. The value of b controls for the

degree of violation in rank similarity. Greater value leads to greater violation. We consider

b = 0, 2 and 3. DGP 1 focuses on exogenous treatment and DGP 2 focuses on endogenous

treatment.

DGP 1: Pr(T = 0) = Pr(T = 1) = 0.5.

DGP 2: Pr(Z = 0) = Pr(Z = 1) = 0.5; T = 1(0.15(Y1 − Y0) + Z − 0.5 > 0).

When treatment is endogenous, we have a generalized Roy model (Roy, 1951). Treat-

ment is determined by an individual’s idiosyncratic gain from the treatment Y1 − Y0 and

additionally by an exogenous variable Z. Z can be taken as a random assignment indicator

for a program, representing program incentives. Subtracting 0.5 normalizes Z − 0.5 to be

mean zero.

Figure 1 illustrates the design of DGP 1 for different values of b. In each graph, the

solid and dotted lines represent FU1|X(.|x) and FU0|X(.|x), the conditional distributions of

potential ranks under treatment and no treatment, respectively at x = 0.4, 0.8, ..., 2. When

b = 0, rank is invariant to treatment, so the two conditional CDFs overlap at all values of X.

When b 6= 0, rank similarity is violated. Figure 1 shows that the degree of violation indeed

increases with b. In addition, for b = 2, 3, rank similarity is violated more strongly at the

lower quantiles.

The left half of Table 1 presents simulation results under DGP 1. We conduct the mean
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test as well as the distributional test with four different sets of quantiles. For each b = 0, 2, 3,

we draw samples of size 500, 1000, 1500, 2000 and 2500. All test statistics are constructed

using bootstrapped variance-covariance matrices with 1,000 bootstrap repetitions. 1,000

simulations are performed for each test. Table 1 reports the rejection rates at the 5%

significance level.

Table 1: Small sample performance of the proposed tests

DGP 1 DGP 2

N 500 1000 1500 2000 2500 500 1000 1500 2000 2500
b = 0 b = 0

Test 1: Ω = {0.5} 0.034 0.039 0.051 0.040 0.053 0.025 0.036 0.041 0.038 0.057

Test 2: Ω = {0.2, 0.3, 0.4} 0.013 0.013 0.025 0.021 0.023 0.012 0.012 0.018 0.017 0.025

Test 3: Ω = {0.5, 0.6, 0.7, 0.8} 0.014 0.014 0.023 0.023 0.018 0.006 0.013 0.016 0.022 0.015

Test 4: Ω = {0.2, 0.3, ..., 0.8} 0.006 0.010 0.013 0.013 0.013 0.002 0.010 0.006 0.010 0.008

Test 5: Mean Test 0.051 0.044 0.048 0.041 0.067 0.054 0.050 0.051 0.045 0.057

b = 2 b = 2
Test 1: Ω = {0.5} 0.074 0.150 0.232 0.303 0.388 0.084 0.242 0.379 0.522 0.615

Test 2: Ω = {0.2, 0.3, 0.4} 0.269 0.776 0.968 0.994 1.000 0.170 0.589 0.870 0.965 0.993

Test 3: Ω = {0.5, 0.6, 0.7, 0.8} 0.151 0.581 0.857 0.962 0.991 0.021 0.150 0.340 0.600 0.764

Test 4: Ω = {0.2, 0.3, ..., 0.8} 0.287 0.910 0.996 1.000 1.000 0.053 0.431 0.823 0.960 0.993

Test 5: Mean Test 0.103 0.213 0.278 0.424 0.500 0.152 0.322 0.481 0.622 0.709

b = 3 b = 3
Ω = {0.5} 0.143 0.335 0.512 0.640 0.800 0.113 0.293 0.441 0.617 0.700

Ω = {0.2, 0.3, 0.4} 0.817 0.999 1.000 1.000 1.000 0.284 0.783 0.975 1.000 1.000

Ω = {0.5, 0.6, 0.7, 0.8} 0.306 0.880 0.992 1.000 1.000 0.020 0.198 0.450 0.704 0.865

Ω = {0.2, 0.3, ..., 0.8} 0.836 0.999 1.000 1.000 1.000 0.093 0.634 0.949 1.000 1.000

Mean Test 0.340 0.659 0.853 0.941 0.971 0.191 0.441 0.602 0.772 0.843

Results for b = 0 under DGP 1 in Table 1 show that both the distributional test and the

mean test control size well. Results for b = 2, 3 show that the power of the proposed tests

increases with the sample size. The rejection rate goes to one rapidly with the increase of the

sample size. In addition, our distributional tests are sensitive to the part of the distribution

at which rank similarity is more seriously violated. When b = 2, 3, as shown in Figure 1, rank

similarity is violated more seriously at the lower quantiles. Consequently, the distributional

tests show greater power when these lower quantiles are included in the tests. In contrast,

the mean test for rank similarity has much lower power due to the fact that rank similarity

is violated only at part of the distribution.
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Figure 2: Small sample performance of the proposed tests: exogenous treatment
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Figure 3: Conditional distributions of potential ranks among compliers
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Figure 2 demonstrates the power performance of the proposed tests visually. The left

graph presents evidence when the sample size is fixed at 1,000 and the value of b varies; the

right graph presents evidence when b is fixed at b = 2 and the sample size varies. As is clear

from these graphs, the distributional tests at a wide range of quantile values in general have

better small sample performance given the DGP under study.

Next we study the performance of the proposed tests under DGP 2 where treatment is

endogenous. Figure 3 illustrates the design of DGP 2. In each graph, the solid and dotted

lines represent FU1|C,X(.|x) and FU0|C,X(.|x), the conditional distributions of compliers’ ranks

under treatment and no treatment, respectively, at x = 0.4, 0.8, ..., 2. Again the violation of

rank similarity is greater when the value of b is larger, especially at the lower quantiles.

The right half of Table 1 presents the simulation results under DGP 2. The proposed

tests again control size well. The power of the tests increases quickly with the sample size.

The distributional tests at a range of quantile values again outperform the mean and median
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Figure 4: Small sample performance of the proposed tests: endogenous treatment
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tests in terms of power. Note that at any given sample size, the tests under DGP2 when

treatment is exogenous has relatively lower power than those under DGP 1 when treatment

is exogenous. This is not surprising, since the ranks of always takers and never takers do

not change by construction and the effective sample size is determined by the fraction of

compliers.

Finally, Figure 4 visually illustrates the small sample performance of the proposed tests

with endogenous treatment. Again the distributional tests when a wide range of quantiles

are included in the test generally perform better in small samples.

6 Empirical Applications

6.1 JTPA

The impact of job training programs on the earnings of trainees, especially those with low

income, is of great interest to both policy makers and economists. Abadie, Angrist, and

Imbens (2002) and Chernozhukov and Hansen (2008) utilize data from a randomized exper-

iment conducted under the JTPA to estimate the impact of the JTPA training program on

the distribution of trainee earnings. An interesting feature of the JTPA training experiment

is that there are almost no always takers, so the estimated LQTEs can be seen as the QTEs

for the treated or the trainees. Both Abadie, Angrist, and Imbens (2002) and Chernozhukov

and Hansen (2008) focus on conditional QTEs.
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Here we estimate unconditional QTEs, as we are interested in learning how training

affects the unconditional distribution of earnings. We then test for rank similarity. If rank

similarity were true, one could infer from the estimated distributional effects the causal

impacts of training on individual trainees at different quantiles of the earnings distribution.

Abadie, Angrist, and Imbens (2002) find that the JTPA training program has significant

impacts at every quantile of the earnings distribution for females, with largest proportional

effects at the low quantiles. In contrast, training does not raise the low quantiles of earnings

for males. We find similar patterns for the unconditional QTEs. However, it still remains

to be seen whether training induces individuals to systematically change their ranks in the

earnings distribution. For example, can we conclude that training has no real impacts on

male trainees at the lower tail of the earnings distribution?

We use the same data as those used in Abadie, Angrist, and Imbens (2002), but we

additionally obtain age in years (instead of 5 age categories) to perform falsification tests

for our rank similarity tests. The sample consists of 5,102 observations for males and 6,102

observations for females. The data contain information on earnings (Y ), training (T ) and

treatment assignment status (Z), and some pre-determined individual characteristics (X).

Earnings are measured as total earnings over the 30 month period following the assignment

into the treatment or control group. The set of individual characteristics includes dummies

for black or Hispanic applicants, a dummy for high-school graduates or GED holders, a

dummy for married applicants, whether the applicant worked at least 12 weeks in the 12

months preceding random assignment, a dummy for AFDC receipt (for women only) and

5 age category dummies. Institutional details along with information regarding the exper-

imental data collection and sample selection criteria can be found in Abadie, Angrist, and

Imbens (2002).

Table 2 presents the estimated unconditional QTEs at equally-spaced quantiles from

0.15 to 0.85 with an increment of 0.05. Also presented are quantiles of the potential earnings

29



Table 2: First-stage estimates of unconditional QTEs of training on trainee earnings

Female Male
Quantile Y0 QTE Y0 QTE

0.15 195 291 (341.88) 1,462 249 (713.36)
0.20 723 714 (358.31)* 2,733 390 (723.01)
0.25 1,458 1,200 (372.08)*** 4,434 489 (746.85)
0.30 2,463 1,380 (399.21)*** 6,993 340 (891.74)
0.35 3,784 1,705 (497.01)*** 8,836 594 (1,042.40)
0.40 5,271 1,974 (669.75)*** 11,010 723 (1,104.63)
0.45 6,726 2,451 (766.25)*** 13,104 1,069 (1,144.28)
0.50 8,685 2,436 (829.29)*** 15,374 1,291 (1,234.59)
0.55 11,007 2,089 (877.56)** 17,357 2,239 (1,295.79)*
0.60 12,618 2,729 (886.96)*** 20,409 2,118 (1,418.40)
0.65 14,682 2,943 (920.45)*** 23,342 2,319 (1,557.00)
0.70 16,971 2,772 (1,027.14)*** 27,169 1,780 (1,606.66)
0.75 20,252 2,106 (1,152.35)* 30,439 2,408 (1,641.47)
0.80 23,064 2,331 (1,149.71)** 34,620 2,800 (1,701.90)*
0.85 26,735 1,762 (1,179.91) 39,233 3,955 (1,886.98)**

Note: Standard errors are in the parentheses; All estimates control for covariates including
dummies for black, Hispanic, high-school graduates (including GED holders), marital status,
whether the applicant worked at least 12 weeks in the 12 months preceding random assignment,
and AFDC receipt (for women only) as well as 5 age group dummies; * significant at the 10%
level, ** significant at the 5% level, ***significant at the 1% level.

without training. Thus, the ratio of the two numbers in each row gives the percentage

change in earnings at each quantile. They would represent real impacts of training on

earnings for individuals at each quantile if rank similarity were satisfied. Similar to the

findings documented in Abadie, Angrist, and Imbens (2002) for the conditional distribution

of earnings, estimates in Table 2 show that the JTPA training program has significant

impacts at almost every quantile for female trainees. The corresponding percentage changes

are larger at lower quantiles due to females’ very low potential earnings without training.

In sharp contrast, the estimated unconditional QTEs are much smaller and insignificant

among male trainees at the low quantiles. At the same time, male trainees have much higher

potential earnings without training, leading to small and insignificant percentage changes at

low quantiles. The estimated QTEs for males are much larger in absolute terms above the

median, but still small in percentage terms. Also, only estimates right above the median

and at the top quantiles are statistically significant. Figure 5 shows the counterfactual

distribution of potential earnings for trainees under training or no training. Consistent with

the estimates in Table 2, for male trainees the lower tail of the earnings distribution does
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Figure 5: Distributions of potential earnings for trainees

0
.2

.4
.6

.8
1

P
ro

ba
bi

lit
y

0 20,000 40,000 80,00060,000
Potential Earnings

LQTE, Female LQTE, Male

Female, Y1 Female, Y0

Male, Y1 Male, Y0

not change much.

Figure 6 present the counterfactual distribution of potential ranks for sub-groups defined

by education and by employment the year before the randomization. In each graph, the

dotted lines represent the cumulative density functions (CDF) of potential ranks under no

training, while the solid lines represent those under training. Those plots illustrate that

different sub-groups may move up or down in ranks when receiving training services. Note

that these figures present evidence at the aggregate level when sub-groups are defined by

characteristics at a couple of dimensions. Below we provide formal test results for rank

similarity.

Panel A of Table 3 reports results of the distributional tests for rank similarity at

two different sets of quantiles. In columns I, the χ2 tests are conducted jointly at Ω =

{0.15, 0.20, ...0.85}, while in columns II, the tests are conducted jointly at Ω = {0.20, 0.3, ...0.80}.

For both tests, we either control for covariates in the first-stage unconditional QTE estima-

tion or not. To ensure the common support assumption (Assumption 2.4), in constructing

the test statistics we do not use X values with less than 5 observations when either Z = 1

or Z = 0.

Panel B of Table 3 reports results from the same tests except that we replace the depen-

dent variable earnings with age in years. Rank similarity holds trivially in this case, since
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Figure 6: Distributions of potential ranks for trainees
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Table 3: The distributional tests for rank similarity - JTPA

Female Male
I II I II

(1) (2) (1) (2) (1) (2) (1) (2)

Panel A: Dependent Var. Earnings
χ2 7,652.1 7,763.8 1,197.2 1,177.8 2,780.7 2,719.0 886.1 876.8

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
d.f. 1,544 1,544 723 723 1,218 1,218 570 570

Panel B: Falsification test (Dependent Var. Age)
χ2 478.8 471.9 252.0 259.9 209.3 203.5 124.7 123.0

(0.926) (0.953) (0.366) (0.245) (1.000) (1.000) (0.977) (0.982)
d.f. 525 525 245 245 338 338 158 158
Note: Results are based on the Chi-squared test in Theorem 2; Variance-covariance matrices are bootstrapped with
2,000 replications; P-values are in the parentheses; Columns I report a joint test at equally-spaced 15 quantiles
from 0.15 to 0.85; Columns II reports a joint test at equally-spaced 7 quantiles from 0.20 to 0.80; (1) controls
for covariates in the first-stage unconditional QTE estimation, while (2) does not; X values with fewer than 5
observations when either Z = 0 or Z = 1 are not used in the test to ensure the common support assumption.
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training should not have causal effects on age. Further, individual characteristics are corre-

lated with age, so these tests serve as valid falsification tests for this empirical application.

As we can see from Table 3, rank similarity can be strongly rejected for both female and

male trainees. The results are very similar regardless of whether one controls for covariates or

not in the first stage. This is due to the fact that assignment to treatment is well randomized

in the JTPA experiment, and so the assignment indicator can serve as a valid IV conditional

on covariates or not. Consistent with the findings here, Abadie, Angrist, and Imbens (2002)

show that the base line covariates are roughly balanced by assignment status. In sharp

contrast, when age is used as the dependent variable rank similarity can not be rejected

for either females or males. Not surprisingly training itself does not cause individuals to

systematically change their ranks in the distribution of ages.

Table 4: The individual quantile tests for rank similarity - JTPA

Panel A: Dependent Var. Earnings Panel B: Falsification test (Dependent Var. Age)
Female Male Female Male

Quantile χ2 χ2 χ2 χ2

0.15 134.4 (0.012) 103.8 (0.045) 43.9 (0.144) 19.4 (0.561)
0.20 143.0 (0.004) 113.3 (0.010) 37.9 (0.340) 22.1 (0.391)
0.25 126.2 (0.060) 107.8 (0.025) 26.0 (0.863) 13.9 (0.907)
0.30 131.9 (0.034) 104.7 (0.039) 26.9 (0.834) 15.0 (0.861)
0.35 147.2 (0.003) 95.8 (0.142) 22.1 (0.956) 17.9 (0.712)
0.40 118.3 (0.160) 88.6 (0.291) 31.1 (0.659) 23.2 (0.447)
0.45 107.5 (0.387) 110.7 (0.019) 32.1 (0.611) 22.4 (0.497)
0.50 110.9 (0.304) 113.6 (0.012) 32.3 (0.599) 19.2 (0.692)
0.55 112.6 (0.266) 110.9 (0.019) 30.8 (0.673) 19.6 (0.664)
0.60 112.1 (0.276) 112.3 (0.015) 32.7 (0.581) 22.3 (0.503)
0.65 121.7 (0.113) 105.0 (0.044) 29.4 (0.734) 18.4 (0.735)
0.70 108.0 (0.375) 106.1 (0.038) 36.7 (0.388) 24.0 (0.402)
0.75 130.4 (0.035) 109.7 (0.018) 45.4 (0.112) 16.5 (0.831)
0.80 118.4 (0.128) 116.5 (0.005) 47.7 (0.074) 17.1 (0.802)
0.85 92.3 (0.697) 118.7 (0.002) 44.7 (0.125) 18.7 (0.716)

Note: Results are based on the Chi-squared test in Theorem 2; Variance-covariance matrices are bootstrapped
with 2,000 replications; P-values are in the parentheses; Covariates are controlled for in the first-stage
unconditional QTE estimation. X values with fewer than 5 observations when either Z = 1 or Z = 0 are
not used in the test to ensure the common support assumption.

To investigate how seriously rank similarity is violated at different parts of the potential

earnings distribution. Panel A of Table 4 presents results of the rank similarity test at each

quantile from 0.15 to 0.85. Panel B presents results of the corresponding falsification test at

each quantile. For males, rank similarity can be rejected at almost all quantiles except for
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the 0.35 and 0.40 quantiles. For females, rank similarity can be rejected strongly at the lower

tail of the distribution, but not much near the median or above. Again in sharp contrast,

at the 5% significance level we fail to reject rank similarity at all quantiles for both females

and males when age in years is used as the dependent variable.11

We next conduct the mean test for rank similarity. These additional results are presented

in Panel A of Table 5. Again we can strongly reject rank similarity for the male sample.

The evidence is a bit weaker for the female sample. In particular, for females we cannot

reject rank similarity at the 5% significance level. The test is marginally significant at the

10% level. This result may not be surprising, given that rank similarity is violated mainly

at the lower tail of the earnings distribution for female trainees. As illustrated in the Monte

Carlo simulations, the mean test for rank similarity may have less power in this case. We

also conduct the mean test using age as the dependent variable. The results are reported in

Panel B of Table 5. Again we fail to reject rank similarity with high p-values.

Table 5: The mean tests for rank similarity - JTPA

Female Male
(1) (2) (1) (2)

Panel A: Dependent Var. Earnings
χ2 123.1 (0.098) 123.1 (0.098) 115.2 (0.009) 115.2 (0.009)
d.f. 104 104 82 82

Panel B: Falsification test (Dependent Var. Age)
χ2 30.6 (0.683) 30.6 (0.683) 18.4 (0.736) 18.4 (0.736)
d.f. 35 35 23 23

Note: Results are based on the Chi-squared test for the mean ranks only; Variance-covariance
matrices are bootstrapped with 2,000 replications; P-values are in the parentheses; (1) con-
trols for covariates in the first-stage unconditional QTE estimation, while (2) does not; X
values with fewer than 5 observations when either Z = 1 or Z = 0 are not used in the test
to ensure the common support assumption.

The above results show that rank similarity is seriously violated for male trainees. Recall

that the estimated distributional effects for males are mostly small and insignificant. These

test results are interesting, since they suggest that training causes men to systemically change

their ranks in the distribution of earnings and that the distribution of program effects are

11The only time the test is rejected only at the 10% significance level is when looking at the 0.80 quantile
for females. There is no systematic evidence of violation of rank similarity otherwise.
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more complicated than those suggested by the estimated QTE’s for male trainees. For female

trainees, training seems to cause more changes in ranks at the low quantiles of the earnings

distribution.

Overall evidence suggests that the estimated QTEs can at best reflect how the earnings

distribution changes with training. One should be cautious in equating the distributional

effects of the JTPA training (as represented by QTEs) with the true impacts on individual

trainees. For example, although training does not raise the lower tail of the earnings distri-

bution for males, it does not necessarily mean that the JTPA training has no real impacts

on male trainees at the bottom of the earnings distribution.

Finally, it is worth mentioning that our results are largely consistent with the findings

in Heckman, Smith, and Clements (1997). Also using the JTPA experimental data, Heck-

man, Smith, and Clements (1997) conduct large-scale permutation exercises to investigate

the program’s impact distribution. They show that “heterogeneity is an important feature

of impact distributions” and that “perfect positive dependence across potential outcome

distributions – produces estimates of impact distributions that are not credible.”

6.2 Project STAR

Project STAR (Student-Teacher Achievement Ratio) is a large-scale randomized experiment

designed to study the effect of class size on students’ academic performance. The experiment

took place in Tennessee in the mid-1980’s. Teachers and over 11,000 students in 79 public

schools were randomly assigned to either a small class (13-17 students), a regular-size class

(22-25 students), or a regular-size class with a full-time teacher aide from grade K to 3.

The STAR literature documents sizeable effects of attending a small class on students’

performance and little effects of having a teacher aide (see, e.g., Krueger, 1999).12 In addition,

Whitmore (2005) evaluates the gender difference in the effects of attending small classes in

12In addition, it is documented that attending small classes improves students’ academic performance in
the short run (Krueger, 1999) and increases students’ probabilities of taking college-entrance exam (Krueger
and Whitmore, 2001), attending college as well as earnings at age 27 (Chetty, Friedman, Hilger, Saez,
Schanzenbach, and Yagan, 2010).
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Project STAR, as well as the peer effect of having a high percentage of female classmates

(who are relatively better performing than boys). It is shown that attending a small class

has positive effects on average for both boys and girls, and that there is no significant gender

difference in the estimated average effects. Further attending a predominantly female class

has positive impacts on a student’s test scores. More recently, Armstrong and Shen (2015)

find that the effect of attending a small class depends on teacher experience and that boys

assigned to teachers with 6-10 years’ experience show the biggest average improvement in

test scores. Educators, policy makers and researchers have long been concerned that boys

are falling behind in early childhood education, since early education may have long-run

impacts. We therefore investigate the impacts of small classes and having a teacher aide

on the gender gap in test scores in grade-K. We also investigate how class size or teacher

aide interact with teachers’ experience in affecting students’ performance. Test scores are

ordinal in nature, e.g., they cannot be summed and redistributed, so it is natural to focus

on students’ test score ranks and examine the distributions of students’ ranks across class

types and teacher experience.

We use data from Achilles, Bain, Bellott, Boyd-Zaharias, Finn, Folger, Johnston, and

Word (2008).13 The sample consists of 5,692 grade K students with non-missing grade K

total test scores (the outcome Y here). Among these 5,692 kindergartners, 1,718 are assigned

to attend a small class, 1,989 are assigned to attend a regular class with a teacher aide, and

the remaining 1,985 attend a regular class without a teacher aide. The treatment T is then

attending a small or an aide class instead of a regular class. We look at class enrollment and

test scores in kindergarten. Given that there is little non-compliance, we assume that the

treatment is exogenous.14 Figure 7 shows the distributions of test scores for students in the

three types of classes. Attending a small class substantially improves the (unconditional)

score distribution in grade K while attending a regular class with a teacher aide does not

13The data set can be downloaded from the Harvard Dataverse at http://hdl.handle.net/1902.1/10766.
14Krueger (1999) shows that only 0.3% of students in the experiment were not enrolled in the class type

to which they were randomly assigned in kindergarten.
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Figure 7: Distributions of potential test scores for kindergarteners
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seem to have much impact on the (unconditional) score distribution.

Figure 8 presents the distributions of potential ranks across class types for boys and girls,

as well as those for students assigned to teachers with different experience levels. In each

graph, the dotted lines represent the CDF of potential ranks under control (regular class),

while the solid lines represent those under treatment (small or aide class). The top left graph

shows that attending a small class helps boys catch up with girls and narrows the gender gap

in ranks, i.e., the CDF curves move closer to the (invisible) 45 degree line. Interestingly the

changes are smaller at the lower tail of the distribution. It seems that attending a small class

is more beneficial for relatively better performing boys and improves their ranks relative to

girls’. In the mean time, the top right graph shows that having a teacher aide also narrows

the gender gap, but the effects are slightly smaller at the top part of the distribution. So

having a teacher aide is more helpful for those relatively low performing boys.

The bottom left graph shows that a small class size greatly narrows the achievement gaps

among students taught by teachers with differen experience levels. The greatest improve-

ment is observed for students assigned to teachers with 6-10 years’ experience. The bottom

right graph, in contrast, shows that assigning an aide to a ‘green-hand’ teacher is relatively
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Figure 8: Distributions of potential ranks for kindergartners
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inefficient and in fact negatively affects students’ ranks. Again, teachers with mid-level ex-

perience (6-10 years) benefit most from having an aide. In the following we conduct the

proposed tests and formally quantify the statistical precision of the rank changes.

Based on the above discussion, we use as covariates X the gender dummy and the three

dummies representing whether a teacher has 0 - 5, 6 - 10, or over 10 years’ experience.

Students’ test scores in the same classroom are likely to be correlated. We follow the practice

of the STAR literature (see, e.g., Whitmore, 2005) to cluster the bootstrapped variance-

covariance matrix at the classroom level. The number of clusters varies from 197 to 324,

depending on the samples used. Given the small number of clusters, and hence small effective

sample size, we conduct the distributional test based on the three quartiles to conserve

degrees of freedom and to avoid extreme quantiles. We additionally test each individual

quantile at the 15 equally-spaced quantiles from 0.15 to 0.85, as we did for the JTPA program,

to show at what quantiles rank similarity is violated.
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Table 6: The distributional and mean tests for rank similarity - STAR

Small v.s. Regular without Aide Regular with v.s. without Aide Small v.s. Regular
I II I II I II

Panel A: Dependent Var. Total Score
χ2 31.90 14.78 25.35 10.75 21.63 7.77

(0.007) (0.011) (0.045) (0.057) (0.118) (0.169)
d.f. 15 5 15 5 15 5
# of clusters 226 226 197 197 324 324
N 3,699 3,699 3,972 3,972 5,688 5,688

Panel B: Falsification test (Dependent Var. Age)
χ2 8.69 3.54 11.43 4.76 11.67 2.35

(0.893) (0.617) (0.722) (0.445) (0.704) (0.799)

d.f. 15 5 15 5 15 5
# of clusters 226 226 197 197 324 324
N 3,699 3,699 3,972 3,972 5,688 5,688

Note: Results are based on the Chi-squared test in Theorem 2 for the special case with T = Z; Variance-covariance
matrices are bootstrapped with 2,000 replications, clustered at classroom level; P-values are in the parentheses;
Columns I report results from the distributional test at quantiles 0.25, 0.50, and 0.75; Columns II reports the
results from the mean test.

Columns I and II in the top Panel A of Table 6 report results from the distributional

test and the mean test for rank similarity, respectively. As shown in Table 6, rank similarity

can be rejected at the 5% significance level for the distributional tests when the treatment

is either small class or aide class. The mean tests show similar results. When students in

regular classes with and without aide are pooled together and compared with those in small

classes, the evidence for violation of rank similarity is weaker, since students in the aide

classes are also treated. Panel B of Table 6 reports results from falsification tests using age

as the dependent variable.15 All falsification tests fail to reject rank similarity.

Table 7 present results from the individual quantile tests. Panel A presents results for

test scores, while Panel B presents results for ages (the falsification tests). When comparing

small classes with regular classes, rank similarity can be rejected at most of the quantiles,

particularly those in the middle. So although the top and bottom students are not sig-

nificantly affected, students in the middle systematically change ranks when moving from

regular-size classes to small classes. In contrast, evidence of potential rank changes is weaker

when comparing aide classes with regular classes. There seem to be some rank changes below

15We construct students’ exact age at December 31, 1985 from their date of birth information.
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Figure 9: Changes in Potential Ranks for Sub-groups
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Table 7: The individual quantile tests for rank similarity - STAR

Panel A: Dependent Var. Test Score Panel B: Falsification test (Dependent Var. Age)
Small v.s. Regular
without Aide

Regular with v.s.
without Aide

Small v.s. Regular
without Aide

Regular with v.s.
without Aide

Quantile χ2 χ2 χ2 χ2

0.15 5.62 (0.345) 4.88 (0.431) 3.86 (0.570) 1.07 (0.957)
0.20 8.47 (0.132) 7.53 (0.184) 3.31 (0.652) 1.75 (0.883)
0.25 15.83 (0.007) 10.28 (0.068) 3.89 (0.566) 2.84 (0.724)
0.30 14.86 (0.011) 11.51 (0.042) 2.20 (0.820) 4.16 (0.527)
0.35 16.29 (0.006) 10.98 (0.052) 5.78 (0.328) 4.39 (0.495)
0.40 15.73 (0.008) 10.48 (0.063) 4.15 (0.528) 4.11 (0.534)
0.45 18.14 (0.003) 11.66 (0.040) 2.08 (0.838) 5.08 (0.406)
0.50 13.89 (0.016) 11.02 (0.051) 1.63 (0.898) 2.16 (0.827)
0.55 14.17 (0.015) 8.96 (0.111) 1.21 (0.944) 1.69 (0.891)
0.60 17.37 (0.004) 9.41 (0.094) 1.39 (0.925) 1.68 (0.891)
0.65 12.82 (0.025) 6.26 (0.281) 2.33 (0.801) 1.15 (0.949)
0.70 10.30 (0.067) 5.14 (0.399) 3.01 (0.699) 2.78 (0.735)
0.75 5.24 (0.387) 3.12 (0.682) 2.42 (0.788) 6.68 (0.245)
0.80 7.01 (0.220) 2.04 (0.844) 4.39 (0.495) 11.33 (0.045)
0.85 7.62 (0.179) 2.92 (0.713) 11.23 (0.047) 15.80 (0.007)
Note: Results are based on the Chi-squared test in Theorem 2 for the special case with T = Z; Variance-
covariance matrices are bootstrapped with 2,000 replications, clustered at classroom level; P-values are in
the parentheses.

the median. Falsification tests again do not reveal systematic changes in ranks of age when

the treatment is either small class or aide class.

Figure 9 plots the distributions of potential ranks along with the changes between different

types of classes for boys as well as those for students assigned to teachers with relatively

low experience (0-5 or 6-10 years v.s. over 10 years’ experience).16 These figures confirm

that attending a small class or having a teacher aide improves boys’ ranks relative to girls’

and narrows the gender performance gap (moving the CDFs closer to the 45 degree line).

Students in small classes or in regular classes with a teacher aide also fare better when the

teachers are somewhat experienced (6-10 years). On the other hand, contrary to what one

might believe, an aide is relatively inefficient in improving students’ ranks when assigned to

an inexperienced teacher.

16Note that figures for girls would mirror those for boys, so we do not present figures for all groups.
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7 Extensions

7.1 Covariates with Infinite Support

If we allow J , the number of the unique values of X, to go to infinity as the sample size n

goes to infinity, then the second-stage conditional means would be estimated at a slower rate.

The estimation error for the unconditional quantiles in the first stage, which is of order
√
n,

is small enough relative to the estimation error in the second stage and hence can be ignored.

Here we discuss a test statistic allowing J → ∞ as n → ∞. In this case the asymptotic

distribution in Theorem 2 no longer holds because the density pZ,X in the denominator goes

to zero in the limit. Recall that nzj =
∑n

i=1 1(Zi = z,Xi = xj) for z = 0, 1. We make the

following assumptions on the data.

Assumption 4. 1. i.i.d. data: the data {Yi, Ti, Zi,Xi} for i = 1, ..., n is a random sample

of size n of (Y, T, Z,X).

2. For all τ ∈ Ω = {τ 1, τ 2, ..., τK}, the random variable Y1 and Y0 are continuously

distributed with positive density in a neighborhood of q0|C(τ) and q1|C(τ) in the subpop-

ulation of compliers.

3. Let nj =
∑n

i=1 1(X = xj). nj � n/J uniformly over j, i.e. there exist 0 < c ≤ C <∞

such that cn
J
≤ nj ≤ C n

J
for all j = 1, ..., J . limn→∞ J/n = 0, and limn→∞ J

3/2n−1/2 =

0.

4. π̂(xj) is uniformly consistent, or supj=1,...,J |π̂(xj)− π(xj)|
p→ 0 as n, J →∞.

5. For all t, z = 0, 1, j = 1, ..., J and τ ∈ Ω, fY |T,Z,X(.|t, z,xj) is bounded in a neighbor-

hood of qt|C(τ). For all τ ∈ Ω and j = 1, ..., J , fY |X(.|xj) is positive and bounded in a

neighborhood of qt|C(τ).

The following corollary gives the asymptotic distribution of the estimator m̂1
j − m̂0

j for

m1
j −m0

j for j = 1, .., J − 1 when J →∞ as n→∞.
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Corollary 3. Given Assumptions 2 and 4 we have

√
n1
jn

0
j

n1
j + n0

j

(
m̂1
j − m̂0

j −
(
m1
j −m0

j

))
⇒ Zj ∼ N(0,Vj),

where Zj for j = 1, ..., J − 1 follow independent multivariate normal distributions with mean

zero and variance-covariance matrix Vj, and the (k, k′)-th element of Vj is

Vj;k,k′ = (1− π(xj))
(
m1
j(τ k ∧ τ k′)−m1

j(τ k)m
1
j(τ k′)

)
+π(xj)

(
m0
j(τ k ∧ τ k′)−m0

j(τ k)m
0
j(τ k′)

)
.

For each j = 1, ..., J , we can define the Wald-type statistic

wj =
n1
jn

0
j

n1
j + n0

j

(
m̂1
j − m̂0

j

)′
V̂−1
j

(
m̂1
j − m̂0

j

)
where V̂j is a consistent estimator of Vj. Let V̂j;k,k′ be the (k, k′)-th element of Vj,

V̂j;k,k′ =
n0
j

n0
j + n1

j

(
m̂1
j(τ k ∧ τ k′)− m̂1

j(τ k)m̂
1
j(τ k′)

)
+

n1
j

n0
j + n1

j

(
m̂0
j(τ k ∧ τ k′)− m̂0

j(τ k)m̂
0
j(τ k′)

)
.

The test statistic under the null hypothesis of rank similarity can be constructed as

WlargeJ =

∑J−1
j=1 wj −K(J − 1)√

2K(J − 1)
.

Given the rate condition stated in Assumpton 4.3 and results in de Jong and Bierens

(1994), WlargeJ ⇒ N(0, 1) as J →∞ under the null. Let cα be the (1−α)×100-th percentile

of the N(0, 1) distribution. The one-sided decision rule of the test is to

“reject the null hypothesis H0 if WlargeJ > cα”.

Note that the asymptotic theory of this test relies on having both J and the sample size at
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each value X = xj go to infinity, which might be a reasonable assumption when one has big

data at hand.

7.2 Continuous Covariates

This section considers the case where one has continuous covariates instead of discrete ones.

Let X = (X1...XL) be a L dimensional vector of continuous variables. For any x ∈ X

and z = 0, 1, define mz
k(x) = E[I(τ k)|Z = z,X = x]. Let mk(.) = m1

k(.) − m0
k(.), we are

interested in testing the following null hypothesis.

H0 : mk(x) = 0 for all x ∈ X and k = 1, ..., K.

The following discusses estimation of mk(x) as well as a Kolmogorov-Smirnov type test

statistic. Similar as before let q̂0|C(τ k) and q̂1|C(τ k) be
√
N -consistent estimators of q0|C(τ k)

and q1|C(τ k), respectively. With product kernel functions Khz (Xi − x) = 1
hz
K
(

Xi−x
hz

)
for

z = 0, 1, and bandwidths h0, h1 → 0, we can define the local linear estimators for m̂0
k(x) and

m̂1
k(x) as the intercepts a0 and a1 in the following minimization problems

min
a0,b01,...b0L

∑
Zi=0

[
1
(
Yi ≤ q̂1|C(τ k)Ti + q̂0|C(τ k)(1− Ti)

)
− a0 −

L∑
l=1

b0l(Xi,l − xl)

]2

Kh0(Xi − x),

min
a1,b11,...b1L

∑
Zi=1

[
1
(
Yi ≤ q̂1|C(τ k)Ti + q̂0|C(τ k)(1− Ti)

)
− a1 −

L∑
l=1

b1l(Xi,l − xl)

]2

Kh1(Xi − x).

We can then estimate mk(x) by m̂k(x) = m̂0
k(x) − m̂1

k(x). Let sk(x) be the standard error

of m̂k(x) for all k = 1, ..., K, which can be estimated using the asymptotic formula (Fan and

Gijbels, 1996) or bootstrap. The test statistic can then be defined as

KS = sup
k,x

∣∣∣∣m̂k(x)

sk(x)

∣∣∣∣ .
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With a significance level α, the null hypothesis is rejected if

KS > cα,

where cα is the critical value that satisfies

lim
n→∞

P

(
sup
k,x

∣∣∣∣m̂k(x)−mk(x)

sk(x)

∣∣∣∣ > cα

)
≤ α. (3)

The following theorem establishes conditions under which one can simulate the critical

value. The asymptotic results utilize the inference method proposed in Chernozhukov, Lee,

and Rosen (2011).

Assumption 5. 1. i.i.d. data: the data {(Yi, Ti, Zi,Xi)} for i = 1, ..., n is a random

sample of size n of (Y, T, Z,X).

2. For all τ ∈ Ω = {τ 1, τ 2, ..., τK}, the random variable Y1 and Y0 are continuously

distributed with positive density in a neighborhood of q0|C(τ) and q1|C(τ) in the subpop-

ulation of compliers.

3. X|Z = z has a conditional density that is bounded away from zero on convex X for

both z = 0, 1. π̂(x) is uniformly consistent, i.e., supx∈X |π̂(x)− π(x)| p→ 0.

4. Ii(τ k)−mz
k(x)|Z = z,X = x has a conditional density that is bounded from above and

from below away from zero uniformly over x ∈ X , z ∈ {0, 1} and τ k ∈ Ω.

5. For all k = 1, ..., K, mk(x) is twice continuously differentiable. Its first derivative is

bounded uniformly over x ∈ X and τ k ∈ Ω.

6. The kernel K has compact support and two continuous derivatives, and satisfies
∫
uK(u) du =

0 and
∫
K(u) du = 1.
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7. The bandwidths, h0 and h1, satisfy that nhL+2
0 → ∞, nhL+2

0 → ∞, nhL+4
0 → 0, and

nhL+4
0 → 0 as n→∞.

Let ε̂k,i = Ii(τ k)−m̂1
k(xi)Zi−m̂0

k(xi)(1−Zi) and m̂∗k(x) be a multiplier process such that

m̂∗k(x) =

∑
Zi=1 ηiε̂k,iKh1(Xi − x)∑

Zi=1Kh1(Xi − x)
−
∑

Zi=0 ηiε̂k,iKh0(Xi − x)∑
Zi=0Kh0(Xi − x)

with {ηi}Ni=1 simulated from i.i.d. N(0, 1), independent of data.

Define cα as the (1− α)× 100-th percentile of the simulated process supk,x

∣∣∣ m̂∗k(x)

sk(x)

∣∣∣.
Corollary 4. Given Assumptions 2 and 5, the multiplier bootstrap critical value cα defined

above satisfies the condition required in equation (3).

Consistency of the test under the null follows trivially from the corollary.

7.3 Testing Conditional Ranks

The discussion so far has focused on testing whether individuals’ unconditional ranks remain

the same with or without treatment. This section considers conditional ranks, which are

relevant when one is interested in conditional QTEs or LQTEs. Previous tests can be

readily extended to this case. Two main modifications are required. First, one estimates

conditional quantiles conditional on some covariates of interest X1 in the first step. Second,

use additional covariates X2 along with X1 to perform the test.

Note that additional covariates are needed for the test, other than those included in

the conditioning set of conditional quantile estimation. Therefore, this test is feasible only

when the conditioning set for the conditional quantiles is small or one has a large set of

covariates. Take as an example this paper’s first empirical application, we estimate quantiles

of potential earnings and perform the tests separately for male and female trainees, so the

tests are essentially rank similarity tests for conditional ranks conditional on gender. We

briefly describe the basic idea below and leave the full exploration for future work.
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Let qt|C,X1 (τ |x1) = F−1
t|C,X1

(τ |x1) for t = 0, 1 and τ ∈ (0, 1), i.e., qt|C,X1 (τ |x1) is the

conditional quantile function of Yt conditional on X1 = x1 among compliers. If Assumption

2 holds conditional on X = (X′1,X
′
2)′, following Frolich and Melly (2013), one can identify

qt|C,X1 (τ |x1) for t = 0, 1 by

(
q0|C,X1 (τ |x1) , q1|C,X1 (τ |x1)

)
= arg min

q0,q1
E
[
ρτ (Y − q0(1− T )− q1T )ωFM |X1 = x1

]
, (4)

where ωFM =
(

Z
π(X)
− 1−Z

1−π(X)

)
(2T − 1) and as before π (X) = Pr (Z = 1|X = x) is the

instrument probability.

If Assumption 2 holds conditional on X1, then one may still utilize the above equation

(4) for identification. Alternatively, if a linear model for conditional quantiles is assumed,

one may follow Abadie, Angrist, and Imbens (2002) and identify the conditional quantiles

q̃t|C (τ) ≡ qt|C,X1 (τ |.) for t = 0, 1 by

(
q̃0|C (τ) , q̃1|C (τ)

)
= arg min

q0,q1
E
[
ρτ (Y − q0(1− T )− q1T −X′1γ)ωAAI

]
, (5)

where ωAAI = 1− T (1−Z)
1−π(x1)

− (1−T )Z
1−π(x1)

and π(x1) = Pr (Z = 1|X = x1). To ensure nonnegativity,

ωFM and ωAAI can be replaced with their projections onto Y , T and X1.

Define the rank indicator among those with X1 = x1 for any τ ∈ (0, 1) and x1 ∈ X1,

where X1 is the support of x1,

Ĩ(τ ,x1) ≡ 1
(
Y ≤

(
Tq0|C,X1 (τ |x1) + (1− T ) q1|C,X1 (τ |x1)

))
.

Let X2 be the support of X2 conditional on X1 = x1. Then analogous to Theorem 1,

rank similarity for the conditional ranks conditional on X1 = x1 holds if and only if for all

τ ∈ (0, 1) and x2 ∈ X2,

E
[
Ĩ(τ ,x1)|Z = 1,X1 = x1,X2 = x2

]
= E

[
Ĩ (τ ,x1) |Z = 0,X1 = x1,X2 = x2

]
. (6)
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One can then test invariance or similarity of the conditional ranks by estimating qt|C,X1 (τ |x1)

for t = 0, 1 first and then test whether equation (6) holds for all τ ∈ (0, 1) and x2 ∈ X2,

replacing qt|C,x1 (τ |x1) with their estimates. Given a sample of i.i.d. data {Yi, Ti, Zi,Xi}ni=1,

qt|C,x1 (τ |x1) for t = 0, 1 can be estimated by the sample counterparts of equation (4) or (5).

That is,

(
q̂0|C,X1 (τ |x1) , q̂1|C,X1 (τ |x1)

)
= arg min

q0,q1

∑
X1i=x1

ρτ (Yi − q0(1− Ti)− q1Ti)ω̂
FM
i∑n

i=1 1 (X1i = x1)
,

where ω̂FMi =
(

Zi

π̂(Xi)
− 1−Zi

1−π̂(Xi)

)
(2Ti − 1), or

(
q̌0|C (τ) , q̌1|C (τ)

)
= arg min

q0,q1

1

n

n∑
i=1

ρτ (Yi − q0(1− Ti)− q1Ti −X′1iγ)ω̂AAIi ,

where ω̂AAIi = 1− Ti(1−Zi)
π̂(X1i)

− (1−Ti)Zi

1−π̂(X1i)
.

When the IV Z is random assignment of treatment, Assumption 2 would hold without

conditioning on any covariates. In this case, X1 can be the set of covariates one is interested

in conditioning on, and X2 can be the additional covariates used for the test purpose. Either

of the above estimators can be used for the first-stage estimation of conditional quantiles.

8 Conclusion

This paper proposes tests for rank invariance or rank similarity that are popular in program

evaluation and various quantile treatment effects models. We nonparametrically identify and

test the counterfactual distribution of potential ranks (or features of the distribution, such as

moments, median or any particular quantile) among observationally equivalent individuals.

The tests can be useful in examining whether particular sub-groups of interest change ranks

in the outcome distribution under treatment. By testing any particular quantile of the

potential rank distribution, the proposed tests are informative regarding at which part of

potential outcome distribution rank similarity is violated.
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The proposed tests allow treatment to be endogenous, with exogenous treatment following

as a special case. The tests can handle instrument variables that are valid regardless of

conditioning on covariates or not. Other than mild regularity conditions, the tests do not

require any additional assumptions other than those used to identify and estimate the first-

stage unconditional QTEs.

We show that with discrete covariates, under standard assumptions, the test statistics

asymptotically follow either a Chi-squared distribution or a standard normal distribution.

A Kolmogorov-Smirnov type test can be conducted with continuous covariates.

Simulation studies show good size and power of the proposed tests in small samples.

We empirically apply the proposed tests to investigate the JTPA program, a large publicly

funded training program and to analyze Project STAR, a large-scale randomized experiment

on class size in the US. We show that training causes individuals to systematically change

their ranks in the earnings distribution. While male trainees change ranks throughout the

earnings distribution, female trainees change ranks only at the lower tail of the distribution.

Overall evidence suggests that the impact of training on earnings are more complicated

than what would be suggested by the standard QTEs. The estimated QTEs of the JTPA

training program therefore at best reflect the impacts of training on the distribution of trainee

earnings instead of those on individual trainees. For Project STAR, we find that attending

a small class or having a teacher aide is relatively more beneficial for boys and narrows the

gender gap in performance. We also find that small classes greatly narrow the achievement

gaps among students taught by teachers with different levels of experience. Those students

who are assigned to teachers with 6-10 years’ experience show the greatest improvement.

We focus on testing for invariance or similarity of individual ranks in the unconditional

distributions of potential outcomes. When conditional QTEs are of interest, the proposed

tests can be extended to test for invariance or similarity of ranks in the conditional distri-

bution of potential outcomes. Testing conditional ranks requires availability of additional
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covariates (other than those used in the first-stage conditional QTE estimation) for testing.

The JTPA empirical application exemplifies this case – essentially we condition on gender

to estimate QTEs and to further test for rank invariance or similarity among male or female

trainees separately. An interesting future direction of research is then to develop further

tests for invariance or similarity of conditional ranks. It might also be interesting to test

stochastic dominance, in addition to equivalence, of the conditional distribution of potential

ranks across treatment states. We leave both to future work.

Appendix

Proof of Lemma 1

For simplicity, here we assume that both X and V are continuous. When X and V are

discrete, one can simply replace the probability density with probability mass functions and

integration with summation below.

Part 1 of the Lemma: By the Bayes’ Rule,

fX,V |Ut(x,v|τ) =
fUt|X,V (τ |x,v)fX,V (x,v)∫∫

W
fUt|X,V (τ |x,v)fX,V (x,v)dxdv

for t = 0, 1, τ ∈ (0, 1) and (x,v) ∈ W .

Rank similarity is defined as FU0|X,V (τ |x,v) = FU1|X,V (τ |x,v). It follows immediately that

fUt|X,V (τ |x,v) ≡ fU |X,V (τ |x,v) for t = 0, 1. Then fX,V |Ut(x,v|τ) ≡ fX,V |U(x,v|τ) for t = 0, 1

and hence FX,V |U1(x,v|τ) ≡ FX,V |U0(x,v|τ) for any τ ∈ (0, 1) and (x,v) ∈ W .

Part 2 of the Lemma: For both t = 0, 1 and all values of (x,v) ∈ W , E[Yt|X = x, V =

v] = E[qt(Ut)|X = x, V = v] =
∫ 1

0
qt(τ)dFUt|X,V (τ |x, v) =

∫ 1

0
qt(τ)dFU |X,V (τ |x, v), where the

last equality follows from the definition of rank similarity. Therefore, E[Y1− Y0|X = x, V =

v] =
∫ 1

0
(q1(τ)− q0(τ)) dFU |X,V (τ |x, v) for any τ ∈ (0, 1) and (x,v) ∈ W .

Part 3 of the Lemma: fUt|X(τ |x) =
∫
Supp(V |X)

fU0|X,V (τ |x,v)dFV |X (v|x) for t = 0, 1, so

fU0|X,V (τ |x,v) = fU1|X,V (τ |x,v) implies fU0|X(τ |x) = fU1|X(τ |x) and hence FU0|X(τ |x) =

FU1|X(τ |x) for any τ ∈ (0, 1) and (x,v) ∈ W .
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Proof of Lemma 2

Lemma 1 shows that rank similarity FU0|X,V (τ |x,v) = FU1|X,V (τ |x,v) implies FU0|X(τ |x) =

FU1|X(τ |x). The following proves that FU0|X(τ |x) = FU1|X(τ |x) implies FU0|X,V (τ |x,v) =

FU1|X,V (τ |x,v) given Assumption 1.

Notice that FU0|X(τ |x) = FU1|X(τ |x) if and only if fU0|X(τ |x) = fU1|X(τ |x). Further,

Assumption 1 implies that fX,V |U0(x,v|τ) = fX,V |U1(x,v|τ). By Bayes’ rule

fUt|X,V (τ |x,v) =
fX,V |Ut(x,v|τ)fUt(τ)

fX,V (x,v)
=

fX,V |Ut(x,v|τ)
∫
X
fUt|X(τ |x)fX(x)dx

fX,V (x,v)
.

Therefore, fU1|X,V (τ |x,v) = fU0|X,V (τ |x,v). It follows that FU1|X,V (τ |x,v) = FU0|X,V (τ |x,v).

Proof of Theorem 1

Identification of FUt|C,X(τ |x) for t = 0, 1, τ ∈ (0, 1) and x ∈XC :

Given Assumption 2, and for x ∈XC E (T |Z = 1,X = x) − E (T |Z = 0,X = x) 6= 0,

following the standard LATE arguments (see, e.g. Abadie 2003), FUt|C,X(τ |x) for t = 0, 1

are identified as follows

FU1|C,X(τ |x) = E [1(U1 ≤ τ)|C,X = x]

= E
[
1(Y1 ≤ q1|C(τ))|C,X = x

]
=

E
[
1(Y ≤ q1|C(τ))T |Z = 1,X = x

]
− E

[
1(Y ≤ q1|C(τ))T |Z = 0,X = x

]
E [T |Z = 1,X = x]− E [T |Z = 0,X = x]

, (7)

and

FU0|C,X(τ |x) = E [1(U0 ≤ τ)|C,X = x]

= E
[
1(Y0 ≤ q0|C(τ))|C,X = x

]
=

E
[
1(Y ≤ q0|C(τ))(1− T )|Z = 1,X = x

]
− E

[
1(Y ≤ q0|C(τ))(1− T )|Z = 0,X = x

]
E [1− T |Z = 1,X = x]− E [1− T |Z = 0,X = x]

.(8)
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Recall I(τ) ≡ 1
(
Y ≤ Tq1|C(τ) + (1− T )q0|C (τ)

)
. The above equations can be re-written as

FUt|C,X(τ |x)

=
E [I(τ)1 (T = t) |Z = 1,X = x]− E [I(τ)1 (T = t) |Z = 0,X = x]

E [1 (T = t) |Z = 1,X = x]− E [1 (T = t) |Z = 0,X = x]
for t = 0, 1.

Derivation of equation (2):

Case 1: for any x ∈ XC , E [T |Z = 1,X = x] − E [T |Z = 0,X = x] 6= 0. Equations (7)

and (8) yield

FU1|C,X(τ |x)− FU0|C,X(τ |x)

=
E [I(τ)|Z = 1,X = x]− E [I(τ)|Z = 0,X = x]

E [T |Z = 1,X = x]− E [T |Z = 0,X = x]
= 0.

Alternatively, first note that rank similarity implies FU0|C,X(τ |.) = FU1|C,X(τ |.) for x ∈XC .

It is equivalent to

E [1(U1 ≤ τ)|C,X = x]− E [1(U0 ≤ τ)|C,X = x]

= E
[
1(Y1 ≤ q1|C(τ))|T1 > T0,X = x

]
− E

[
1(Y0 ≤ q0|C (τ))|T1 > T0,X = x

]
= E

[
1(Y1 ≤ q1|C(τ))|T1 > T0, Z = 1,X = x

]
− E

[
1(Y0 ≤ q0|C (τ))|T1 > T0, Z = 0,X = x

]
= E

[
1(Y1 ≤ q1|C(τ))|T1 > T0, T = 1,X = x

]
− E

[
1(Y0 ≤ q0|C (τ))|T1 > T0, T = 0,X = x

]
= E

[
1(Y ≤ q1|C(τ))|C, T = 1,X = x

]
− E

[
1(Y ≤ q0|C (τ))|C, T = 0,X = x

]
= E [I(τ)|C, T = 1,X = x]− E [I(τ)|C, T = 0,X = x] = 0,

where the second equality follows from the definition of compliers, the third equality follows

from Assumption 1.1 Y1, Y1, T1, T0 ⊥ Z|X, and the fourth equality follows from the fact

that T = T1Z + T0 (1− Z) = Z for compliers.

Given Assumption 2, for x ∈XC , E (I(τ)|C, T = 1,X = x)−E (I(τ)|C, T = 0,X = x) can

be identified as the ratio of two intention-to-treat estimands (Imbens and Angrist, 1994),
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i.e.,

E (I(τ)|C, T = 1,X = x)− E (I(τ)|C, T = 0,X = x)

=
E (I(τ)|Z = 1,X = x)− E (I(τ)|Z = 0,X = x)

E (T |Z = 1,X = x)− E (T |Z = 0,X = x)
= 0.

Case 2: for x ∈X/XC , T0 = T1 by Assumption 2.3. Further

E [I(τ)|Z = z,X = x] = E [1(Y ≤ q1(τ))T + 1(Y ≤ q0(τ))(1− T )|Z = z,X = x]

= E [1(Y1 ≤ q1(τ))Tz + 1(Y0 ≤ q0(τ))(1− Tz)|Z = z,X = x]

= E [1(Y1 ≤ q1(τ))Tz + 1(Y0 ≤ q0(τ))(1− Tz)|X = x] ,

where the second equality holds by the definition of Y and T0, T1 and the third equality holds

by Assumption 2.1. T0 = T1 then means that Equation (2) holds trivially for x ∈X/XC .

Therefore, given any τ ∈ (0, 1), FU0|C,X(τ |.) = FU1|C,X(τ |.) for x ∈XC holds if and only if

for x ∈X ,

E [I(τ)|Z = 1,X = x]− E [I(τ)|Z = 0,X = x] = 0.

Proof of Theorem 2

Proof. Let p̂zj =
nz
j

n
be the nonparametric estimator of pzj = PZ,X(z,xj). The nonparametric

estimator

m̂z
j(τ k) =

1

n

n∑
i

1
(
Yi ≤ q̂1|C(τ k), Ti = 1, Zi = z,Xi = xj

)
/p̂zj

+
1

n

n∑
i

1
(
Yi ≤ q̂0|C(τ k), Ti = 0, Zi = z,Xi = xj

)
/p̂zj .

It’s population counterpart is

mz
j(τ k) = FY,T |Z,X(q1|C(τ k), 1|z,xj) + FY,T |Z,X(q0|C(τ k), 0|z,xj).
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Let m̌z
j(τ k) = 1

n

∑n
i 1
(
Yi ≤

(
Tiq̂1|C(τ k) + (1− Ti)q̂0|C(τ k)

)
, Zi = z,Xi = xj

)
/pzj and m̃z

j(τ k) =

FY,T |Z,X(q̂1|C(τ k), 1|z,xj) + FY,T |Z,X(q̂0|C(τ k), 0|z,xj). Decompose
√
n
(
m̂z
j(τ k)−mz

j(τ k)
)

so

that

√
n
(
m̂z
j(τ k)−mz

j(τ k)
)

=
√
n
(
m̂z
j(τ k)− m̌z

j(τ k)
)

+
√
n
(
m̌z
j(τ k)− m̃z

j(τ k)
)

+
√
n
(
m̃z
j(τ k)−mz

j(τ k)
)

= I + II + III.

First, we can show that for all z = 0, 1, j = 1, ..., J − 1, and k = 1, ..., K,

I =
√
n
(
m̂z
j(τ k)− m̌z

j(τ k)
)

=
1

n

n∑
i

1
(
Yi ≤ q̂1|C(τ k), Ti = 1, Zi = z,Xi = xj

) −√n(p̂zj − pzj)
p̂zjp

z
j

+
1

n

n∑
i

1
(
Yi ≤ q̂0|C(τ k), Ti = 0, Zi = z,Xi = xj

) −√n(p̂zj − pzj)
p̂zjp

z
j

=FY,T |Z,X(q̂1|C(τ k), 1|z,xj)
−
√
n(p̂zj − pzj)
pzj

+ FY,T |Z,X(q̂0|C(τ k), 0|z,xj)
−
√
n(p̂zj − pzj)
pzj

+ op(1)

=FY,T |Z,X(q1|C(τ k), 1|z,xj)
−
√
n(p̂zj − pzj)
pzj

+ FY,T |Z,X(q0|C(τ k), 0|z,xj)
−
√
n(p̂zj − pzj)
pzj

+ op(1)

=−
mz
j(τ k)

pzj

1√
n

(
n∑
i=1

1(Zi = z,Xi = xj)− pzj

)
.

The second equality follows from convergence of p̂zj , and the fact that for fixed z, t and xj the

class of indicator functions gy = 1 (Yi ≤ y, Ti = t, Zi = z,Xi = xj) is Glivenko-Cantelli so

that
∣∣ 1
n

∑n
i 1
(
Yi ≤ q̂t|C(τ k), Ti = t, Zi = z,Xi = xj

)
− FY,T,Z,X(q̂t|C(τ k), t, z,xj)

∣∣ a.s.→ 0. The

third equality follows from convergence of q̂t|C(τ k), continuity of FY,T |Z,X(., t|z,xj) in a neigh-

borhood of qt|C(τ k), and the Continuous Mapping Theorem.

Next, notice that due to consistency of q̂t|C(τ k), continuity of FY,T,Z,X(., t, z,xj) in a

neighborhood of qt|C(τ k), and the Continuous Mapping Theorem, we can show that for all
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z = 0, 1, j = 1, ..., J − 1, and k = 1, ..., K,

∫ [
1(Y ≤ q̂1|C(τ k), Z = z,X = xj)− 1(Y ≤ q1|C(τ k), Z = z,X = xj)

]2
dF (Y, 1, Z,X)

+

∫ [
1(Y ≤ q̂0|C(τ k), Z = z,X = xj)− 1(Y ≤ q0|C(τ k), Z = z,X = xj)

]2
dF (Y, 0, Z,X)

=F (q̂1|C(τ k), 1, z,xj) + F (q1|C(τ k), 1, z,xj)− 2F (min(q̂1|C(τ k), q1|C(τ k)), 1, z,xj)

+ F (q̂0|C(τ k), 0, z,xj) + F (q0|C(τ k), 0, z,xj)− 2F (min(q̂0|C(τ k), q0|C(τ k)), 0, z,xj)

p→0.

Since for fixed z, t and xj the class of indicator functions gy = 1 (Yi ≤ y, Ti = t, Zi = z,Xi = xj)

is also Donsker, by Lemma 19.24 of Van der Vaart (1998),

II =
√
n
(
m̌z
j(τ k)− m̃z

j(τ k)
)

=
1√
n

n∑
i=1

[
Ii(τ k)1(Zi = z,Xi = Xj)

pzj
−mz

j(τ k)

]
+ op(1).

Last, by boundedness of the second derivative of FY |T,Z,X(y|t, z,x) with respect to y in a

neighborhood of qt|C(τ k), we have that

III =
√
n
(
m̃z
j(τ k)−mz

j(τ k)
)

=
√
n
(
FY,T |Z,X(q̂1|C(τ k), 1|z,xj) + FY,T |Z,X(q̂0|C(τ k), 0|z,xj)

)
−
√
n
(
FY,T |Z,X(q1|C(τ k), 1|z,xj)− FY,T |Z,X(q0|C(τ k), 0|z,xj)

)
=fY |T,Z,X(q0|C(τ k)|0, z,xj)

(
1− pT |Z,X(z,xj)

)√
n
(
q̂0|C(τ k)− q0|C(τ k)

)
+ fY |T,Z,X(q1|C(τ k)|1, z,xj)pT |Z,X(z,xj)

√
n
(
q̂1|C(τ k)− q1|C(τ k)

)
+ op(1).

By Frolich and Melly (2013), we have

√
n
(
q̂t|C(τ k)− qt|C(τ k)

)
= −

1√
n

∑n
i=1 ψt(Yi, Ti, Zi,Xi)

Pcft|C(qt|C(τ k))
+ op(1)
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where for pi = Pr (Zi = 1),

ψt(Yi, Ti, Zi,Xi) =
ZiTi
pi

(
1(Yi ≤ qt|C(τ k)− τ k

)
− E

[
1(Y ≤ qt|C(τ k)− τ k)|T = t, Z = 1,X = Xi

]
)

− (1− Zi)Ti
1− pi

(
1(Yi ≤ qt|C(τ k)− τ k

)
− E

[
1(Y ≤ qt|C(τ k)− τ k)|T = t, Z = 0,X = Xi

]
)

+
ZiTi − E[T |X = Xi, Z = 1](Zi − pi)

pi
E
[
1
(
Y ≤ qt|C(τ k)

)
− τ k|T = t, Z = 1,X = Xi

]
− (1− Zi)Ti − E[T |X = Xi, Z = 0](Zi − pi)

1− pi
E
[
1
(
Y ≤ qt|C(τ k)

)
− τ k|T = t, Z = 0,X = Xi

]
.

Combining all the results yields

√
n
(
m̂z
j(τ k)−mz

j(τ k)
)

=
1√
n

n∑
i=1

[(
Ii(τ k)−mz

j(τ k)
)
1(Zi = z,Xi = xj)

pzj

]

− fY |T,Z,X(q0|C(τ k)|0, z,xj)
(
1− pT |Z,X(z,xj)

) 1√
n

∑n
i=1 ψ0(Yi, Ti, Zi,Xi)

Pcf0|C(q0|C(τ k))

− fY |T,Z,X(q1|C(τ k)|1, z,xj)pT |Z,X(z,xj)

1√
n

∑n
i=1 ψ1(Yi, Ti, Zi,Xi)

Pcf1|C(q1|C(τ k))
+ op(1)

=
1√
n

n∑
i=1

φzj(τ k, Yi, Ti, Zi,Xi) + op(1)

The theorem is then proven by applying the Central Limit Theorem.

Proof of Corollary 1

Proof. Under H0, m1 = m0. So the test statistic

W = n
(
(m̂1 − m̂0)− (m1 −m0)

)′
V̂−1

(
(m̂1 − m̂0)− (m1 −m0)

)
⇒ χ2(K(J − 1))

as n→∞. The convergence result follows from Theorem 2 and the fact the V̂ is a consistent

estimator of V. Therefore when the null is true,

P (reject the null) = P (W > cα)→ α.
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Under the alternative, m1 −m0 = A, which is a K(J − 1)× 1 vector of constants that are

not all zero. Then

W = n
(
(m̂1 − m̂0)− (m1 −m0) + A

)′
V̂−1

(
(m̂1 − m̂0)− (m1 −m0) + A

)
→∞

as n→∞. Therefore when the null is not true,

P (reject the null) = P (W > cα)→ 1.

Proof of Corollary 2

Proof. First consider the case with t = 1. For all τ ∈ (0, 1),

R̂(y, 1) =
1

S

S∑
s=1

1
((
q̂1|C (τ s)

)
≤ y
)

=
1

S

S∑
s=1

[
1
((
q1|C (τ s)

)
≤ y
)

+ 1
((
q̂1|C (τ s)

)
≤ y
)
− 1

((
q1|C (τ s)

)
≤ y
)]

≤ 1

S

S∑
s=1

1
((
q1|C (τ s)

)
≤ y
)

+
1

S

S∑
s=1

1
(
min{q̂1|C (τ s) , q1|C (τ s)} ≤ y ≤ max{q̂1|C (τ s) , q1|C (τ s)}

)
≤ 1

S

S∑
s=1

1
((
q1|C (τ s)

)
≤ y
)

+
1

S

S∑
s=1

1
(
q1|C (τ s)− |q̂1|C (τ s)− q1|C (τ s) | ≤ y ≤ q1|C (τ s) + |q̂1|C (τ s)− q1|C (τ s) |

)
=

∫
1
((
q1|C (τ)

)
≤ y
)
dτ +

∫
1
(
q1|C (τ)− |ε| ≤ y ≤ q1|C (τ) + |ε|

)
dτ + op(1),
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where ε
p→ 0. Notice that the first part is equal to R(y, 1) and the second part satisfies

∫
1
(
q1|C (τ)− |ε| ≤ y ≤ q1|C (τ) + |ε|

)
dτ =

∫
1
(
y − |ε| ≤ q1|C (τ) ≤ y + |ε|

)
dτ

=

∫
1
(
F1|C(y − |ε|) ≤ τ ≤ F1|C(y + |ε|)

)
dτ = F1|C(y + |ε|)− F1|C(y − |ε|)

=op(1).

The last equality is by the convergence result of q̂1|C and hence ε, and the continuous mapping

theorem.

Similarly, we can show the convergence result for t=0. Therefore, R̂(y, t)
p→ R(y, t) as

S, n→∞ for both t = 0, 1.

To show the weak convergence result stated in the corollary, notice that

√
n
(
m̈1
j − m̈0

j

)
=
√
n

(
1

S

S∑
s=1

(
1− m̂1

j(τ
s)
)
−
(
1− m̂0

j(τ
s)
))

=
1

S

S∑
s=1

√
n
(
m̂0
j(τ

s)− m̂1
j(τ

s)
)

=

∫ 1

0

√
n
(
m̂0
j(τ)− m̂1

j(τ)
)
dτ

+
1

S

S∑
s=1

√
n
(
m̂0
j(τ

s)− m̂1
j(τ

s)
)
−
∫ 1

0

√
n
(
m̂0
j(τ)− m̂1

j(τ)
)
dτ

=I + II.

Since under the null hypothesis, m̄1
j − m̄0

j = 0 for all j = 1, ..., J − 1,

I =

∫ 1

0

√
n
(
m̂0
j(τ)−m0

j(τ)−
(
m̂1
j(τ)−m1

j(τ)
))
dτ

=
1√
n

n∑
i=1

∫ 1

0

(
φ0
j(τ , Yi, Ti, Zi,Xi)− φ1

j(τ , Yi, Ti, Zi,Xi)
)
dτ + op(1).

The second equality follows from Theorem 2 and the Dominated Convergence Theorem.
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Meanwhile, under the null hypothesis

E(II) = E[I]
p→ 0,

V ar(II) =
1

S
V ar(I)

p→ 0,

as S,N →∞. By Chebyshev’s Inequality, we have II = op(1).

Since

∫ 1

0

I(τ)dτ = 1− U , and

∫ 1

0

mz
j(τ)dτ = 1− m̄z

j ,

plugging the results into the φzj(τ , Yi, Ti, Zi,Xi) functions defined in Theorem 2 and applying

the central limit theorem proves the result in Corollary 2.

Proof for Corollary 3

Proof. Let m̃z
j(τ k) = E

[
1
(
Yi ≤ Tiq̂1|C(τ k) + (1− Ti) q̂0|C(τ k)

)
|Zi = z,Xi = xj

]
. First we

have

√
nzj
(
m̂z
j(τ k)−mz

j(τ k)
)

=
√
nzj
(
m̂z
j(τ k)− m̃z

j(τ k)
)

+
√
nzj
(
m̃z
j(τ k)−mz

j(τ k)
)

= I + II.

First notice that by the consistency of q̂1|C(τ k) and q̂0|C(τ k) and the continuous mapping

theorem, for all z = 0, 1, k = 1, ..., K, and j = 1, ..., J − 1,

∫ [
1
(
Y ≤ q̂1|C(τ k)

)
− 1

(
Y ≤ q1|C(τ k)

)]2
dFY,T |Z,X(Y, 1|z,xj)

+

∫ [
1
(
Y ≤ q̂0|C(τ k)

)
− 1

(
Y ≤ q0|C(τ k)

)]2
dFY,T |Z,X(Y, 0|z,xj)

p→ 0
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Similar to the arguments in the proof of Theorem 2 and by Lemma 19.24 of Van der

Vaart (1998), we have that for all z = 0, 1, k = 1, ..., K, and j = 1, ..., J − 1,

I =
1√
nzj

∑
Zi=z,Xi=xj

(
Ii(τ k)−mz

j(τ k)
)

+ op(1).

Meanwhile, for all z = 0, 1, k = 1, ..., K, and j = 1, ..., J − 1,

II =
√
nzjE

[
1
(
Yi ≤ Tiq̂1|C(τ k) + (1− Ti) q̂0|C(τ k)

)
|Zi = z,Xi = xj)

]
−
√
nzjE

[
1
(
Yi ≤ Tiq1|C(τ k) + (1− Ti) q0|C(τ k)

)
|Zi = z,Xi = xj)

]
=
√
nzj/nfY |T,Z,X(q̄k1 |1, z,xj)PT |Z,Xj

(z,xj)
√
n
(
q̂1|C(τ k)− q1|C(τ k)

)
+
√
nzj/nfY |T,Z,X(q̄k0 |0, z,xj)

(
1− PT |Z,Xj

(z,xj)
)√

n
(
q̂0|C(τ k)− q0|C(τ k)

)
=op(1),

where q̄kt is a value between q̂t|C(τ k) and qt|C(τ k) for both t = 0, 1. The second equality

follows from the Mean Value Theorem, and the last equality follows from the boundedness

of fY |T,Z,X(.|t, z,xj) in a neighborhood of qt|C(τ k) and the weak convergence result of q̂0|C(τ k)

shown in Frolich and Melly (2013).

Now, let λn,j = n0
j/
(
n1
j + n0

j

)
. Then

√
n1
jn

0
j

n1
j + n0

j

{
m̂1
j(τ k)− m̂0

j(τ k)−
(
m1
j(τ k)−m0

j(τ k)
)}

=
√
λn,j

1√
n1
j

∑
Zi=1,Xi=xj

(
Ii(τ k)−m1

j(τ k)
)
−
√

1− λn,j
1√
n0
j

∑
Zi=0,Xi=xj

(
Ii(τ k)−m0

j(τ k)
)

+ op(1).
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For any j, compiling all K quantiles together gives

√
n1
jn

0
j

n1
j + n0

j

{
m̂1
j − m̂0

j −
(
m1
j −m0

j

)}
⇒
√

1− π(xj)N1(0,V1) +
√
π(xj)N0(0,V0),

where N1 and N0 are two independent normally distributed random variable because the

data are i.i.d. and the variance-covariance matrix V1 and V2 have (k, k′)-th element equal

to m1
j(τ k)−m1

j(τ k)m
1
j(τ k′) and m0

j(τ k)−m0
j(τ k)m

0
j(τ k′) respectively. Then we know that

√
n1
jn

0
j

n1
j + n0

j

{
m̂1
j − m̂0

j −
(
m1
j −m0

j

)}
⇒ N(0,Vj),

where the (k, k′)-th element of Vj equal to

(1− π(xj))
(
m1
j(τ k ∧ τ k′)−m1

j(τ k)m
1
j(τ k′)

)
+ π(xj)

(
m0
j(τ k ∧ τ k′)−m0

j(τ k)m
0
j(τ k′)

)
.

Proof of Corollary 4

Proof. The critical value satisfies equation (3) by the arguments in Example 7 of Cher-

nozhukov, Lee, and Rosen (2011).
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