Regression Discontinuity Designs with Sample Selection

Yingying Dong

University of California Irvine

One frequently encountered issue in empirical applications of RD design – Sample selection!

Recent Examples:

- McCrary and Royer (2011) investigate effects of women's education on fertility and *infant health* (observed only if giving birth).
- Kim (2012) estimates effects of taking remedial courses on *performance in subsequent main courses* (observed only if completing subsequent courses).
- Other: Martorell and McFarlin (2011), Sampaio et al. (2013)...

Motivation: Illustration of the Issue

- Sample selection -> incomparability of observations above/ below the RD cutoff.
- Standard RD design (Hahn et al. 2001) is invalid.

Extends the standard RD design to allow for sample selection or missing outcomes.

- Point identifies extensive and intensive margins of the RD treatment effect.
 - Extensive margin: effect on the participation probability.
 - Intensive margin: effect on the observed outcome distribution conditional on participation.
- Provides subgroup treatment effect bounds.
 - Also point identification of characteristics of subgroups (e.g. always participating vs. quitting compliers) useful for policy.

Identification here

- does not require exclusion restrictions in the selection equation.
 - Standard sample selection correction requires exclusion restrictions or functional form/distributional assumptions: Heckman (1979, 1990), Ahn and Powell (1993), Lee (1994), Andrews and Schafgans (1998), Das, Newey and Vella (2003) and Lewbel (2007) etc.
- does not require specifying the selection mechanism.
 - Sample selection could be caused by non-participation, dropout, survey nonresponse, or other reasons (e.g., censoring by death).

Applies these results to examine effects of academic probation on college persistence and GPA.

T =Treatment; $T \in \{0, 1\}$.

S=Sample selection indicator; $S\in\{0,1\}.$

 $Y^* = (Partially observed) outcome.$

Observe $Y = Y^*$ if S = 1; missing if S = 0.

 Y_t^* , t = 1, 0 is potential outcome under treatment or no treatment. S_t , t = 1, 0 is potential sample selection under treatment or no treatment. • Let $T_1(r)$ and $T_0(r)$ be potential treatment status above or below the RD cutoff, respectively.

Let T = h(R, V) for unobservables V, which can be a vector. WLG, rewrite $T = h_1(R, V) Z + h_0(R, V) (1 - Z)$, where $Z = 1 (R \ge r_0)$. Then define $T_1(r) \equiv h_1(r, V)$ and $T_0(r) \equiv h_0(r, V)$.

Individual types

Always takers (A): $T_1(r) = T_0(r) = 1$, Never takers (N): $T_1(r) = T_0(r) = 0$, Compliers (C): $T_1(r) > T_0(r)$, Defiers (D): $T_1(r) < T_0(r)$ (Angrist, Imbens, and Rubin, 1996).

<ロト <回ト < 回ト < 回ト < 回ト = 三日

Two Margins of the RD treatment effect

• Extensive margin $\equiv E[S_1 - S_0 | R = r_0, C]$.

• e.g. change in the dropout rate with or without the probation policy.

Intensive margin

$$\equiv E[Y_1^*|S_1=1, R=r_0, C] - E[Y_0^*|S_0=1, R=r_0, C].$$

- e.g., how the quality (training) of college graduates differs with or without the probation policy, regardless of composition.
- causal only from the distributional point of view.

ASSUMPTION 1: The following assumptions hold for $r \in (r_0 - \varepsilon, r_0 + \varepsilon)$ for some small $\varepsilon > 0$.

- A1. (Discontinuity): $\lim_{r \uparrow r_0} E[T|R = r] \neq \lim_{r \downarrow r_0} E[T|R = r]$.
- A2. (Monotonicity): $Pr(T_1 \ge T_0) = 1$.
- A3. (Smoothness): $F_{Y_t^*,S_t|R,\Theta}(y,s|r)$ for $s, t \in \{0,1\}$ is continuous at r_0 . The probability of each type $\Pr[\Theta|R=r]$ for $\Theta \in \{A, N, C\}$, is continuous at r_0 . The density of R is continuous and strictly positive at r_0 .

Point Identification of Extensive vs. Intensive Margin

THEOREM 1 Let $I_t \equiv 1$ (T = t). Given Assumption 1, for t = 0, 1

$$E[S_t|R = r_0, C] = \frac{\lim_{r \downarrow r_0} E[SI_t|R = r] - \lim_{r \uparrow r_0} E[SI_t|R = r]}{\lim_{r \downarrow r_0} E[I_t|R = r] - \lim_{r \uparrow r_0} E[I_t|R = r]}, \quad (1)$$

$$E[g(Y_{t}^{*})|S_{t} = 1, R = r_{0}, C]$$

$$= \frac{\lim_{r \downarrow r_{0}} E[g(Y^{*})SI_{t}|R = r] - \lim_{r \uparrow r_{0}} E[g(Y^{*})SI_{t}|R = r]}{\lim_{r \downarrow r_{0}} E[SI_{t}|R = r] - \lim_{r \uparrow r_{0}} E[SI_{t}|R = r]}.$$
(2)

• $p_t \equiv E[S_t|R = r_0, C]$; Extensive margin = $p_1 - p_0$.

• Setting $g(Y^*) = 1(Y^* \le y)$ identifies $F_{Y_t^*|S_t=1,R=r_0,C}(y)$; Setting $g(Y^*) = Y^*$ identifies $\mathbb{E}_t \equiv E[Y_t^*|S_t=1, R=r_0, C]$ and Intensive margin= $\mathbb{E}_1 - \mathbb{E}_0$.

• See, e.g., Abadie (2003) and Frandsen et al. (2012).

General Bounds without Additional Assumptions

Composition of $S_1 = 1$ is not the same as that of $S_0 = 1$. Can derive bounds on always participating $(S_0 = S_1 = 1)$ compliers.

• Let
$$p_{11} \equiv E [S_1 = 1, S_0 = 1 | R = r_0, C]$$

• $p_{11} \in \mathcal{P} \equiv (0, 1] \cap [p_0 + p_1 - 1, \min \{p_0, p_1\}];$
• Let $F_t(y) \equiv F_{Y_t^* | S_t = 1, R = r_0, C}(y)$ and $Q_t(\tau) \equiv F_t^{-1}(\tau)$ for $t = 0, 1$
and $\tau \in (0, 1)$.

By Horowitz and Manski (1995), the worst-case (best-case) scenario bounds are

$$\begin{split} \Delta^{LB} &= \min_{p_{11} \in \mathcal{P}} \left(\frac{p_1}{p_{11}} \int_{-\infty}^{Q_1(p_{11}/p_1)} y dF_1(y) - \frac{p_0}{p_{11}} \int_{Q_0(1-p_{11}/p_0)}^{+\infty} y dF_0(y) \right), \\ \Delta^{UB} &= \max_{p_{11} \in \mathcal{P}} \left(\frac{p_1}{p_{11}} \int_{Q_1(1-p_{11}/p_1)}^{+\infty} y dF_1(y) - \frac{p_0}{p_{11}} \int_{-\infty}^{Q_0(p_{11}/p_0)} y dF_0(y) \right). \end{split}$$

ASSUMPTION 2 (Monotonic Selection): $Pr(S_0 \ge S_1) = 1$.

- Treatment can only affect sample selection in "one direction" (Lee, 2009, Kim 2012, Blanco et al, 2013, Chen and Flores, 2014).
- Consistent with a latent index sample selection model with an additively separable latent error (Heckman 1979, 1990 and Vytlacil 2002).

Bounds under Monotonic Selection

- Given monotonic selection, $S_1 = 1$ consists of only always participants $(S_1 = 1, S_0 = 1)$, while $S_0 = 1$ consists of always participants and quitters $(S_1 = 0, S_0 = 1)$.
- Can then identify the fraction of quitters among $S_0 = 1$:

$$q \equiv \frac{\Pr(S_1 = 0, S_0 = 1 | R = r_0, C)}{\Pr(S_0 = 1 | R = r_0, C)} \\ = \frac{\lim_{r \downarrow r_0} E[S|R = r] - \lim_{r \uparrow r_0} E[S|R = r]}{\lim_{r \downarrow r_0} E[S(1 - T) | R = r] - \lim_{r \uparrow r_0} E[S(1 - T) | R = r]}.$$

• "Trimming" the lower or upper q fraction of observations in the distribution of $Y_0^*|S_0 = 1, R = r_0, C$ yields the worst-case scenario bounds (Horowitz and Manski, 1995).

Bounds under Monotonic Selection

THEOREM 2 Under Assumptions 1 and 2, the upper and lower bounds of $E[Y_1^* - Y_0^*|S_1 = 1, S_0 = 1, R = r_0, C]$ are given by

$$\begin{split} \Delta_m^{UB} &= \mathbb{E}_1 - \frac{1}{1-q} \int_{-\infty}^{Q_0(1-q)} y dF_{Y_0^*|S_0=1,R=r_0,C} \left(y \right) \\ &= \mathbb{E}_1 - \frac{E\left[1 \left(Y_0^* \le Q_0 \left(1-q \right) \right) Y_0^* | S_0=1, R=r_0,C \right]}{1-q}, \text{and} \end{split}$$

$$\begin{split} \Delta_m^{LB} &= \mathbb{E}_1 - \frac{1}{1-q} \int_{Q_0(q)}^{+\infty} y dF_{Y_0^*|S_0=1,R=r_0,C}(y) \\ &= \mathbb{E}_1 - \frac{E\left[1\left(Y_0^* \ge Q_0\left(q\right)\right) Y_0^*|S_0=1,R=r_0,C\right]}{1-q}, \end{split}$$

respectively, where $\mathbb{E}_1 \equiv E[Y_1^*|S_1 = 1, R = r_0, C]$, the quantile $Q_0(\tau) \equiv \inf\{y: F_{Y_0^*|S_0=1, R=r_0, C}(y) \ge \tau\}$ for $\tau = 1 - q, q$.

- Can also construct bounds on the quantile treatment effect (QTE).
- Define $QTE(\tau) \equiv F_{Y_1^*|S_0=1,S_1=1,R=r_0,C}^{-1}(\tau) F_{Y_0^*|S_0=1,S_1=1,R=r_0,C}^{-1}(\tau)$ for $\tau \in (0,1)$.
- Suppose Assumptions 1 and 2 hold. The upper and lower bounds of $\textit{QTE}\left(\tau\right)$ are

$$\begin{array}{lll} \textit{QTE}^{\textit{UB}}\left(\tau\right) &=& \textit{Q}_{1}\left(\tau\right) - \textit{Q}_{0}\left(\tau\left(1-q\right)\right) \quad \text{and} \\ \textit{QTE}^{\textit{LB}}\left(\tau\right) &=& \textit{Q}_{1}\left(\tau\right) - \textit{Q}_{0}\left(1-\left(1-\tau\right)\left(1-q\right)\right). \end{array}$$

- Can identify characteristics of always participating or quitting compliers, given monotonic selection.
- Let X be some pre-determined covariate.
 - 1. Replacing Y^* with X in Theorem 1 identifies $F_{X|S_1=1,R=r_0,C}(x)$, $F_{X|S_0=1,R=r_0,C}(x)$.
 - 2. $F_{X|S_1=1,R=r_0,C}(x)$ is for always participants: $F_{X|S_1=1,R=r_0,C}(x) = F_{X|S_1=1,S_0=1,R=r_0,C}(x)$.
 - B. F_{X|S0=1,R=r0,C} (x) is for 1 − q fraction of always participants and q fraction of quitters.

Testable Implications of Monotonic Selection / Identify Subgroup Characteristics

COROLLARY 2 Assume that A1, A2 hold. Assume further that A3 holds after replacing Y_t^* with X. Under Assumption 2, we have

$$F_{X|S_{1}=1,S_{0}=1,R=r_{0},C}(x) = F_{X|S_{1}=1,R=r_{0},C}(x),$$

$$F_{X|S_{1}=0,S_{0}=1,R=r_{0},C}(x) = \frac{1}{q}F_{X|S_{0}=1,R=r_{0},C}(x) - \frac{1-q}{q}F_{X|S_{1}=1,R=r_{0},C}(x).$$

Monotonic sample selection implies

$$1 \geq \frac{1}{q} F_{X|S_0=1,R=r_0,C}\left(x\right) - \frac{1-q}{q} F_{X|S_1=1,R=r_0,C}\left(x\right) \geq 0 \text{ for all } x \in \mathcal{X}.$$

• Can verify monotonic selection by a one-sided t test for the above.

ASSUMPTION 3 (Stochastic Dominance): $F_{Y_1^*|S_0=1,S_1=1,R=r_0,C}(y) \leq F_{Y_1^*|S_0=0,S_1=1,R=r_0,C}(y)$ and $F_{Y_0^*|S_0=1,S_1=1,R=r_0,C}(y) \leq F_{Y_0^*|S_0=1,S_1=0,R=r_0,C}(y)$ for all $y \in \mathcal{Y}$.

The distribution of Y_1^* (Y_0^*) for the always participating compliers weakly stochastically dominates that of the quitting (newly participating) compliers.

Bounds under Stochastic Dominance

THEOREM 3 Assume that $p_0 + p_1 > 1$. Given Assumptions 1 and 3, the upper and lower bounds of $E[Y_1^* - Y_0^*|S_1 = 1, S_0 = 1, R = r_0, C]$ are given by

$$\begin{split} \Delta_{s}^{UB} &= E\left[Y_{1}^{*}|S_{1}=1, Y_{1}^{*} \geq Q_{1}\left(\frac{1-p_{0}}{p_{1}}\right), R=r_{0}, C\right] - \mathbb{E}_{0} \\ &= \frac{p_{1}E\left[1\left(Y_{1}^{*} \geq Q_{1}\left(\frac{1-p_{0}}{p_{1}}\right)\right)Y_{1}^{*}|S_{1}=1, R=r_{0}, C\right]}{p_{0}+p_{1}-1} - \mathbb{E}_{0} \end{split}$$

$$\begin{split} \Delta_{s}^{LB} &= \mathbb{E}_{1} - E\left[Y_{0}^{*}|S_{0} = 1, Y_{0}^{*} \geq Q_{0}\left(\frac{1-p_{1}}{p_{0}}\right), R = r_{0}, C\right] \\ &= \mathbb{E}_{1} - \frac{p_{0}E\left[1\left(Y_{0}^{*} \geq Q_{0}\left(\frac{1-p_{1}}{p_{0}}\right)\right)Y_{0}^{*}|S_{0} = 1, R = r_{0}, C\right]}{p_{0} + p_{1} - 1} \end{split}$$

where $\mathbb{E}_{t} \equiv E[Y_{t}^{*}|S_{t} = 1, R = r_{0}, C], t = 0, 1.$

Suppose Assumptions 1 and 3 hold. The upper and lower bounds of $\textit{QTE}\left(\tau\right)$ are

$$\begin{aligned} & QTE_{s}^{UB}\left(\tau\right) \;\;=\;\; Q_{1}\left(1-\frac{\left(1-\tau\right)\left(p_{0}+p_{1}-1\right)}{p_{1}}\right)-Q_{0}\left(\tau\right) \quad \text{and} \\ & QTE_{s}^{LB}\left(\tau\right) \;\;=\;\; Q_{1}\left(\tau\right)-Q_{0}\left(1-\frac{\left(1-\tau\right)\left(p_{0}+p_{1}-1\right)}{p_{0}}\right). \end{aligned}$$

Note that Assumptions 2 and 3 may be changed and combined, depending on their plausibility in a particular empirical application.

E.g., Can tighten the bounds using both assumptions:

$$\begin{aligned} \Delta_{ms}^{LB} &= \Delta_{m}^{LB} \\ &= E\left[Y_{1}^{*}|S_{1}=1, R=r_{0}, C\right] - \frac{1}{1-q} \int_{Q_{0}(q)}^{+\infty} y dF_{Y_{0}^{*}|S_{0}=1, R=r_{0}, C}(y), \\ \Delta_{ms}^{UB} &= E\left[Y_{1}^{*}|S_{1}=1, R=r_{0}, C\right] - E\left[Y_{0}^{*}|S_{0}=1, R=r_{0}, C\right]. \\ &= \mathbb{E}_{1} - \mathbb{E}_{0}. \end{aligned}$$

The intensive margin effect is the upper bound!

Nearly all colleges and universities in the US have the academic probation policy.

Surprisingly little empirical evidence.

- $Y^* =$ cumulative GPA.
- S = 1 if one does not drop out and 0 otherwise.
- T = ever being placed on academic probation.
- R = first semester GPA; On probation if GPA falls below $r_0 = 2.0$.

03/2017

22 / 43

Confidential data from Texas Higher Education Opportunity Project (THEOP).

- Both admission records and transcript data are available.
- Sample is representative of the entire population of the first-time freshmen cohorts between 1992 and 2002 from a large public university in Texas.
- Sample consists of 64,310 students for whom there are complete records.

Empirical Application: Sample Summary Statistics

Note that the sample size is much smaller for final GPA, indicating serious sample selection or attrition!

	Ever on probation		Never	on probation	
	Ν	Mean (SD)	Ν	Mean (SD)	Difference
		II: 1st se	emester ($GPA = 2.0 \pm 0.5$	
Final GPA	4,607	2.565	7,901	2.808	-0.243
		(0.324)		(0.323)	(0.006)***
College completion	8,512	0.541	9,351	0.845	-0.304
		(0.498)		(0.362)	(0.006)***
Male	8,512	0.565	9,357	0.465	0.100
		(0.496)		(0.499)	(0.007)***
White	8,512	0.746	9,351	0.806	-0.059
		(0.435)		(0.396)	(0.006)***
SAT score	8,497	1,111	9,336	1,124	-12.43
		(127.2)		(120.4)	(1.855)***
Top 25% of HS class	8,512	0.706 [´]	9,351	0.778 [´]	-0.073
		(0.456)		(0.415)	(0.007)***
HS NHS member	8,512	0.265	9,351	0.273	-0.008
		(0.442)		< (0.446) × < =	(0.007) =
ong (University of California Invine	2)	Tobit RD			03/2017 24

43

Table 1 Sample Descriptive Statistics

First-stage Figures

Ever placement on probation

Figure: Probation and the first semester GPA (centered at 2.0)

Validity of the RD Design

Y. Dong (University of California Irvine)

03/2017 26 / 43

Validity of the RD Design

Figure: Density of the running variable (first semester GPA)

Table 2	RD	Validity	Tests
---------	----	----------	-------

I: RD effects of Academic Probation on Covariates					
Male	0.032 (0.045)	Top 25% of HS Class	-0.040 (0.036)		
White	0.005 (0.038)	HS NHS member	-0.006 (0.033)		
SAT score	0.158 (12.87)	Feeder school	0.025 (0.025)		
II: Discontinuity in the Density of Running Variable					
	0.115 (0.600)		0.047 (0.041)		
		1.1 · · · · · · · · · · · · · · · · · ·	1 241 1 4		

Note: In Panel I, the CCT bias-corrected estimates along with robust standard errors are reported. In Panel II, the first column reports the estimated discontinuity in logarithm of the empirical density of the running variable (with a bin width 0.01); the second column reports the estimated discontinuity by the nonparametric density estimator of Cattaneo, Jansson, and Ma (2016).

College Completion and Final GPA

	Full sample		Female		Male	
	I: RDD with sample selection					
1): $\Pr(S_0 = 1)$	0.824	(0.018)***	0.834	(0.023)***	0.820	(0.025)***
2): $\Pr(S_1 = 1)$	0.773	(0.039)***	0.659	(0.064)***	0.875	(0.080)***
Extensive margin: 2)-1)	-0.051	(0.037)	-0.182	(0.068)***	0.057	(0.090)
3): $E(Y_0 S_0 = 1)$	2.727	(0.016)***	2.768	(0.020)***	2.686	(0.022)***
4): $E(Y_1 S_1 = 1)$	2.771	(0.026)***	2.837	(0.039)***	2.716	(0.036)***
Intensive margin: 4)-3)	0.045	(0.036)	0.069	(0.050)	0.030	(0.050)
	II: Standard RDD					
	0.029	(0.032)	0.049	(0.040)	0.047	(0.058)
		III: Bound	s for alway	s participating	; compliers	
Lower bound 2	0.045	(0.036)	0.069	(0.050)	0.030	(0.052)
Upper bound 2	0.209	(0.098)**	0.148	(0.121)	0.030	(0.102)
90% CI 2	[-0.002	0.336	[-0.002	0.318]	[-0.055	0.198]
Ν	64,310		32,952		31,358	

Table 3 Effects of Academic Probation on College Completion and Final GPAs

Note: All estimates are conditional on compliers at the 1st semester GPA equal to 2.0; Estimation of the extensive and intensive margins, and the bounds follows the description in Sections 2 and 3.1, respectively. The CCT bias-corrected robust inference is used; In Panel III, 1 refers to the bounds under the monotonic sample selection assumption, while 2 refers to the bounds assuming additionally mean dominance, particularly $E(Y_0|S_0 = 1, S_1 = 0, C, R = r_0) \ge E(Y_0|S_0 = 1, S_1 = 1, C, R = r_0)$; Bootstrapped standard errors are in the parentheses; Imbens and Manski's (2004) CIs are reported; *** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.

Female College Persistence and GPA

Male College Persistence and GPA

	1st year	2nd year	3rd year	4th year		
	I: RDD with sample selection					
(1): $\Pr(S_0 = 1)$	0.974	0.898	0.848	0.801		
	(0.005)***	(0.019)***	(0.023)***	(0.029)***		
(2): $\Pr(S_1 = 1)$	0.956	0.779	0.686	0.641		
	(0.015)***	(0.049)***	(0.065)***	(0.070)***		
Extensive margin: (2)-(1)	-0.011	-0.117	-0.162	-0.167		
	(0.017)	(0.052)**	(0.071)**	(0.073)**		
(3): $E(Y_0 S_0 = 1)$	2.149	2.480	2.608	2.683		
	(0.011)***	(0.017)***	(0.018)***	(0.023)***		
(4): $E(Y_1 S_1 = 1)$	2.125	2.529 [´]	2.636	2.775 ´		
	(0.027)***	(0.035)***	(0.040)***	(0.056)***		
Intensive margin: (4)-(3)	-0.024	0.049	0.029 Ó	0.092 ⁽		
	(0.042)	(0.050)	(0.070)	(0.073)		
	II: Standard RDD					
	0.033	0.039	0.012	0.106		
	(0.023)	(0.039)	(0.042)	(0.042)**		
	III: B	Bounds for always	participating com	npliers		
lower bound 2	-0.024	0.049	0.029	0.092		
	(0.042)	(0.050)	(0.070)	(0.073)		
Upper bound 2	0.080	0.066	0.229	0.108		
	(0.069)	(0.147)	(0.183)	(0.104)		
90% CI 2	[-0.079 0.169]	[-0.031 0.300]	[-0.063 0.421]	[-0.008 0.272]		
N	51,374	51,115	48,128	40,921		
Note: All estimates are conditional on compliers at the 1st semester GPA equal to 2.0; Esti-						
Dong (University of California Irvine) Tobit RD 03/2017 33 / 43						

Table 4 Effects on College Persistence and GPAs (Women)

			()		
	1st year	2nd year	3rd year	4th year	
	I: RDD with sample selection				
$(1): \Pr(S_0 = 1)$	0.973	0.925	0.872	0.809	
	(0.005)***	(0.017)***	(0.022)***	(0.027)***	
(2): $\Pr(S_1 = 1)$	0.975	0.856	0.872	0.847	
	(0.015)***	(0.047)***	(0.056)***	(0.066)***	
Extensive margin: (2)-(1)	0.000	-0.063	-0.008	0.036	
	(0.017)	(0.050)	(0.065)	(0.078)	
(3): $E(Y_0 S_0 = 1)$	2.108	2.416	2.517	2.597	
	(0.014)***	(0.018)***	(0.021)***	(0.026)***	
(4): $E(Y_1 S_1 = 1)$	2.192	2.523 [´]	2.611	2.710 [´]	
	(0.024)***	(0.039)***	(0.038)***	(0.043)***	
Intensive margin: (4)-(3)	0.084	0 .107	0.094	Ò.113	
- () ()	(0.027)***	(0.054)**	(0.054)*	(0.072)	
	II: Standard RDD				
	0.078	0.103	0.098	0.142	
	(0.025)***	(0.046)**	(0.049)**	(0.064)**	
	III:	Bounds for alway	s participating c	ompliers	
Lower bound 2	0.084	0.107	0.094	0.113	
	(0.027)	(0.054)	(0.054)	(0.072)	
Upper bound 2	0.084	0.188	0.094	0.113	
	(0.088)	(0.138)	(0.142)	(0.194)	
90% CI 2	[0.039 0.230]	0.030 0.384]	0.006 0.327	-0.006 0.429]	
Ν	51,374	51,115	48,128	40,921	
Note: All estimates are conditional on compliers at the 1st semester GPA equal to 2.0; Esti-					
. Dong (University of California Irvine))	Tobit RD		03/2017 34 / 43	

Table 5 Effects on College Persistence and GPAs (Men)

Lower ability women drop out? No

Table 6 Mean Characteristics of Subgroups of Compliers

	Always participants	Quitters
White	0.781 (0.067)***	0.893 (0.374)**
SAT score	1,093 (14.19)***	1,112 (106.4)***
Top 25% of HS class	0.774 (0.068)***	0.948 (0.460)**
HS NHS	0.268 (0.059)***	0.346 (0.450)
Feeder school	0.172 (0.055)***	0.005 (0.419)

Note: Estimates are based on the sample of women; NHS means National Honors Society member; The CCT bias-corrected estimates are reported; Boot-strapped standard errors are in the parentheses; *** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.

Estimated quitter characteristics suggest

Monotonic sample selection is plausible.

2 Quitters would perform no worse than always participating compliers.

Assume the above, bounds on the always participating compliers (bounds 2 in the tables) are

$$\begin{split} \Delta_{ms'}^{UB} &= \mathbb{E}_1 - \frac{1}{1-q} \int_{-\infty}^{Q_0(1-q)} y dF_{Y_0^*|S_0=1,R=r_0,C}(y) \\ \Delta_{ms'}^{LB} &= \mathbb{E}_1 - \mathbb{E}_0. \end{split}$$

Striking gender differences in responses:

- Women are significantly more likely to drop out once placed on probation.
 - No evidence on low-ability women dropping out (evidence consistent with a discouragement effect).
- Little impacts on men's dropout rate.
- Men cope with this negative signal by temporarily improving their performance to avoid being suspended.

College Persistence and GPA: Top 25% of HS class

College Persistence and GPA: Non-top 25% of HS class

			<u> </u>	/		
	1st year	2nd year	3rd year	4th year		
	I: RDD with sample selection					
(1) : Pr $(S_0 = 1)$	0.975	0.914	0.863	0.808		
	(0.003)***	(0.015)***	(0.018)***	(0.023)***		
(2): $\Pr(S_1 = 1)$	0.976	0.774	0.696	0.700		
	(0.014)***	(0.042)***	(0.055)***	(0.054)***		
Extensive margin: (2)-(1)	-0.019	-0.116	-0.157	-0.087		
	(0.015)	(0.041)***	(0.057)***	(0.049)*		
(3): $E(Y_0 S_0 = 1)$	2.134	2.455	2.576	2.642		
	(0.009)***	(0.014)***	(0.016)***	(0.020)***		
(4): $E(Y_1 S_1 = 1)$	2.178 [´]	2.526 [´]	2.627 [´]	2.762 ´		
	(0.018)***	(0.028)***	(0.030)***	(0.037)***		
Intensive margin: (4)-(3)	0.044	0.071	0.050	0.120		
	(0.027)*	(0.035)**	(0.041)	(0.050)**		
	II: Standard RDD					
	0.033	0.039	0.012	0.106		
	(0.027)	(0.039)	(0.042)	(0.042)**		
	III:	Bounds for alway	s participating co	mpliers		
Lower bound 2	0.044	0.071	0.050	0.120		
	(0.027)*	(0.035)**	(0.041)	(0.050)**		
Upper bound 2	0.119	0.279	0.232	0.308		
	(0.055)	(0.128)	(0.126)	(0.107)		
90% CI 2	0.009 0.190	0.026 0.444	[-0.003 0.395]	0.056 0.445		
N	51,374	51,115	48,128	40,921		
Note: All estimates are conditional on compliers at the 1st semester GPA equal to 2.0; Esti-						
. Dong (University of California Irvine	Dong (University of California Irvine) Tobit RD 03/2017 40 / 43					

Table 1A Effects on College Persistence and GPAs (Top 25% of HS Class)

Dong (University of California Irvine)

5 (<mark>1</mark>)					
	1st year	2nd year	3rd year	4th year	
	I: RDD with sample selection				
(1): $\Pr(S_0 = 1)$	0.960	0.896	0.840	0.787	
	(0.010)***	(0.027)***	(0.034)***	(0.046)***	
(2): $\Pr(S_1 = 1)$	0.993	0.872	0.895	0.865	
	(0.018)***	(0.064)***	(0.079)***	(0.109)***	
Extensive margin: (2)-(1)	0.035	-0.024	0.047	0.070	
	(0.022)	(0.068)	(0.088)	(0.113)	
(3): $E(Y_0 S_0 = 1)$	2.102	2.428	2.530	2.646	
	(0.018)***	(0.027)***	(0.032)***	(0.044)***	
(4): $E(Y_1 S_1 = 1)$	2.138 [´]	2.547 [´]	2.625 [´]	2.695	
	(0.032)***	(0.052)***	(0.060)***	(0.080)***	
Intensive margin: (4)-(3)	0.036	0.119	0.094	0.049	
	(0.042)	(0.070)*	(0.071)	(0.095)	
	II: Standard RDD				
	0.043	0.118	0.102	0.077	
	(0.038)	(0.057)**	(0.073)	(0.078)	
	III: E	Bounds for always	s participating co	mpliers	
Lower bound 2	0.036	0.119	0.094	0.049	
	(0.042)	(0.070)*	(0.071)	(0.095)	
Upper bound 2	0.036	0.300	0.094	0.049	
	(0.082)	(0.199)	(0.159)	(0.193)	
90% CI 2	[-0.033 0.171]	[0.024 0.569]	[-0.022 0.355]	[-0.108 0.366]	
N	12,868	12,795	11,947	10,607	
Note: All estimates are conditional on compliers at the 1st semester GPA equal to 2.0; Esti-					
Dong (University of California Irvine) Tobit RD 03/2017 41 / 43					

Table 2A Effects on College Persistence and GPAs (Non-top 25% of HS Class)

Dong (University of California Irvine)

- This paper extends the standard RD design to deal with sample selection.
- Identification relies on smoothness conditions; empirically plausible and readily testable.
- Main results:
 - Point identification of the extensive and intensive margins of the RD treatment effect.
 - Sharp bounds for the treatment effect among the always participating compliers.
 - Point identification of characteristics of each subgroup of compliers (e.g., always participating compliers vs. quitters/new participants)
- Applies these results and shows striking gender difference in responses to academic probation along the extensive vs. intensive margin.

Possible extension/future work

- *S* as a mechanism variable:
 - *T* can affect *Y* through *S*, so can extend the current framework to separate 1) the mechanism effect of *S* on *Y* holding *T* fixed from 2) the net effect of *T* on *Y*, holding *S* fixed.
 - e.g., *T* =college educ., *Y* =earnings, *S* =blue- vs. white-collar occupation
- Current Theorem 1 can be extended directly to the case where S is categorial;

• So to identify
$$E [1 (S_t = k) | R = r_0, C]$$
 and
 $E [g (Y_t^*) | S_t = k, R = r_0, C]$, for $k = 1, ..., K$, where $1 (S_t = k)$
indicates selection into category k .